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FOREWORD

The work described in this report was performed under a contract

(Number NASr-37) granted to Stanley Aviation Corporation in April 1961

by the National Aeronautics and Space Administration. Quarterly

status reports have been issued in July 1961 (Stanley Report No. 776) and

October 1961 (Stanley Report No. 787) and this document represents the

Final Report on a research study to investigate human tolerance to short

duration acceleration using the dynamic model technique.

Stanley Aviation Corporation wishes to thank Mr. G. J. Pesman

and Mr. H. F. Scherer of the National Aeronautics and Space Administra-

tion (Manned Spacecraft Center) for their valuable assistance during

this program. Also, the cooperation of the following agencies who

supplied important experimental data is acknowledged; Holloman Air

Force Base, Naval Air Material Center, Federal Aviation Agency,

Aeromedical Laboratory of the Wright Air Development Divisions Aviation

Crash Injury Research of Cornell University.
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SUYMARY

This report is concerned with the study of human tolerance to

abrupt accelerations where the duration times are less than one tenth

of a second.

A dynamic model analogous to the human body, consisting of a

spring-mass system, is used in the analysis. When an acceleration

is applied to the base of the spring, the response of the system is

similar to the dynamic response of the human body under the influ-

ence of the same acceleration. If the input acceleration-time his-

tory is assumed to have a simple form, such as that represented by

a step, rectangular or ramp function, the solution of the motion of

the model in terms of the spring deflection and mass acceleration is

relatively simple. The basic mathematics involved in obtaining this

dynamic response is developed in the Appendices for a variety of

simple input forms. The tolerance criterion adopted consists of

setting a limit on the mass acceleration attained by the mass, so

that the peak mass acceleration achieved under given input condi-

tions is an important parameter. A linear, undamped, single degree

of freedom system is used as the basic model, but the influence of

damping and non-linearity of the spring on tolerance limits is also

considered. The output of the model, in terms of the mass accelera-

tion, depends on the input duration and damping, but can be as much

as twice the value of the input acceleration. In the impact region,

velocity change is an important criterion.

A physical interpretation of the motion of the mass is given and

the response characteristics of the system for step, rectangular, ramp,

parabolic and sinusoidal inputs are described. The model is used in

a qualitative study of restraint and seat cushion effects, and for

the case of an occupant in an escape capsule or seat. The influence
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of rate of onset on dynamic response is considered and the influ-

ence of rise time and spring frequency on tolerance levels is

deduced.

The theory of two and three degree of freedom systems is

developed in an attempt to obtain a better representation of the

human body. These preliminary investigations show that such models

can be used, but, further information on the mechanical properties

of the body are desirable. On present evidence, it is considered

that the single degree of freedom system represents a useful work-

ing model, and over-complication at this stage will not provide

better analysis techniques.

The equations of motion governing the motion of the spring-mass

system contain certain coefficients that must be evaluated by corre-

lation with experimental data. All the available test results have

been reviewed, but end point information is very limited; and only

tentative conclusions could be drawn. Values of equivalent fre-

quency and allowable mass acceleration have been deduced for the

headward, forward and backward acceleration directions. In the

data analyses, an equivalent rectangular input was used for defining

the input acceleration and duration time, in an attempt to remove

inconsistencies in the choice of these values.

When complex acceleration inputs have to be studied, as is

usual in a practical case, analytical solutions of the equations

of motion are not possible and numerical methods must be used. A

digital computer (IBM 1620) has been programmed for this purpose

and an electronic analog developed that can be used for rapid

analyses. The method of applying these techniques is described.

The primary use of the dynamic model is for the analysis of

arbitrary inputs to predict if a given aceleration time history
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will prove harmful to a human, or not. Depending on the direction

of the applied acceleration, a frequency is assigned to the spring-

mass system and the output (mass acceleration) of the model is deter-

mined for the given input. Comparing the maximum mass acceleration

with the relevant allowable value enables the expected tolerance

level to be determined.
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SYMBOLS

The notation presented here refers to the main text

only. Because of the large amount of mathematics involved,

some duplication of symbols used in the text and Appendices

has proved necessary. For the symbols used in the Appendices,

reference should be made to the list of symbols preceding each

Appendix.

A amplification factor for sinusoidal input

AJ output amplitude (three degree of freedom,
ý = 1, 2, 3)

c damping coefficient (c - K)m

E energy absorption capacity of cushionc

F force

g acceleration due to gravity

G gravitationally normalized input acceleration (~)
c (9

G gravitationally normalized mass acceleration (P)
P

G' gravitationally normalized steady applied
acceleration

k spring stiffness

K damping constant

mi mass associated with three degree of freedom
system ( ý = 1, 2, 3)

"m q mass associated with one or two degree of
Sq freedom system

"m mass of escape system or seat
c

R4 ratio of output to input accelerations for
three degree of freedom system (T = 1, 2, 3)

t time

t rise time
r

At input duration time

At limiting duration time for impulsive theory
c
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v velocity or velocity change

AvG bottoming velocity change

YB acceleration required to bottom cushion (: 1 )

yo input acceleration applied to system, relative
to fixed datum

acceleration of mass mp relative to fixed datum

My apparent acceleration of mass due to force
developed in its own spring-damper relative
to fixed datum (multi-degree of freedom system)

ýCo amplitude of sinusoidal input acceleration

0 step input function (acceleration)

A slope of ramp input function
(rate of onset of acceleration)

constant in parabolic input function

deflection of spring

g rate of change of deflection of spring (velocity)

rate of change of velocity of spring (acceleration)

so deflection of spring at bottoming

initial deflection of spring

"frequency" (= w; = )

real part of output amplitude three degree of
freedom model

imaginary part of output amplitude)

phase angle

spring frequency (t =- )

too damped frequency of system ( Li? ...-•)

SI frequency of sinusoidal input

n coupled frequency (L = 1,2,3)
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1.0 INTRODUCTION

The importance of the problem of human reaction to applied

accelerations has been recognized for many years, but recent

advances in the aerospace sciences have underlined the fact that

adequate knowledge in this area is still lacking. It is well

known that much higher accelerations can be sustained if the

duration time is short, than if the acceleration is applied

over a long period. Abruptly applied accelerations are

encountered by humans in many situations such as automobile

and aircraft crashes, ejection from high speed aircraft,

re-entry, surface impact on landing and during accelerating

rocket flight. Man's tolerance to short duration accelera-

tions must be known with some degree of accuracy before safe

advances can be made in these areas. Although a considerable

amount of experimental information has been obtained to date,

the way in which it has been gathered and presented does not

allow adequate predictions to be made about future projects

from the available data.

The solution of the problem is not simple and will require

a high degree of cooperation between the various groups of

diverse talents and experiences working in the human factors

field. In this respect, it is important that the knowledge

gained by each group is transmitted in such a way that its

significance is not overlooked because of misunderstanding or

lack of familiarity with the particular branch of science or

engineering concerned. The purpose of this report is to present

the results of a study that essentially emphasises the analytical

approach to the subject. The investigation is mainly theoretical,

but the experimental results of others play an important part

in the development of the theory. The mathematics involved

might appear trivial to the dynamicist but, at the same time,

might present a barrier to the non-mathematically minded biologist.

This barrier must not prove insurmountable, since the engineering



approach presents one aspect of the problem which can have

important implications in other fields. For this reason$

an attempt has been made in the present report to explain

the basic engineering approach to the subject and point out

the physical implications of the mathematical results.

In justifying a mathematical approach to the problem

of human tolerance to abrupt accelerations it should be

pointed out that no branch of science is complete or exact

until an acceptable theory has been developed and checked

by correlation with experiment. The postulating of a

dynamic model is one attempt to produce a workable analogy,

and by analyzing the motion of a spring-mass system under

the influence of an applied accelerationand attempting to

relate the results to the observed response of a human under

similar conditions, it is hoped that the model can be used

to predict whether or not a given acceleration-time history

will prove harmful. At least, the information gained will

make a valuable addition to the gathering stock-pile of

knowledge in the acceleration stress field and contribute

to an overall understanding of the problem.

The investigations described in this report are confined

to a study of the dynamics of human tolerance to short

duration accelerations where the injurious effects are mainly

of a structural nature, rather than hydraulic effects

associated with longer duration accelerations which have

been extensively studied in the centrifuge. Short duration

is taken here to include the impulse (or impact) region which

refers to accelerations of duration 0 to approximately

0.01 sec. and the plateau region, which extends the regime

to approximately 0.1 sec. The term plateau region is derived

from the general shape of the tolerance curve which appears

to level off for durations of approximately 0.01 sec. to

2



0.1 sec., as indicated in Figure 1. The form of the

tolerance curve will be discussed in more detail in

Section 2.2.

1.1 The Problem

When a human is subjected to an abrupt acceleration

of sufficient magnitude, injuries that are mainly of a

mechanical nature can result. These depend to some extent

on the direction of application of the acceleration but

can consist of bone fracture, internal organ rupture and

bruises. Cardiovascular shock and debilitation can also

result and head injuries from impact blows and neck snap

can occur, although for the purpose of this studyperfect

head restraint is assumed. The medical and biomechanical

aspects are of extreme importance but, in the semi-empirical

analysis used here, it is sufficient to determine an

acceleration level that will cause any injury that is liable

to seriously impair the subject's functional ability. This

criterion has been taken as the definition of an end point

for the analysis of experimental results and when physiolog-

ical effects giving rise to discomfort are noticeable but do

not impair the subject's functional ability, the condition is

termed near-end point.

Very simply stated, the problem is to determine a means

of predicting whether or not a particular acceleration input

to a vehicle will prove injurious to the occupant. In the

past, experimental methods have been used where volunteers

have been subjected to high accelerations in an attempt to

determine tolerance limits for the human body. These tests

have supplied valuable information, but are often difficult

to interpret and the results cannot easily be applied to

other cases where the conditions might be radically different

from those pertaining to the test. From the point of view
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of vehicle design, the lack of reliable information imposes

performance penalties on the vehicle since, when human life

is involved, it is natural to take a very conservative view

of the available allowables. Further, expensive develop-

ment testing is necessary to evaluate the vehicle from the

human factors standpoint.

Experiment has shown that the accelerations measured on

the human body can, under some conditions, greatly exceed the

vehicle accelerations. Although the occupant's response

cannot be measured with any degree of accuracy, since it is

difficult to obtain a rigid mount for the measuring instrument

and it is certain that different parts of the body experience

different accelerations, the qualitative results provide an

important clue to one way in which the problem can be tackled.

The response of the occupant must be related in some way to

the vehicle acceleration, which is the most convenient parameter

for reference purposes. This can be done by postulating an

analagous spring-mass system to represent the man and studying

the motion of the mass when an acceleration is supplied to the

base of the spring.

This concept of a dynamic model representing a human

under the influence of a short duration acceleration is

developed in this report and its application to various

aspects of the problem discussed. In particular, an

analytical method is developed that can be used to determine

whether or not an arbitrary acceleration-time history is

tolerable to man. The mathematics involved in studying the

dynamics of the model have been separated from the main text

and reported in Appendix form, but constant reference is made

to the mathematical analyses and the implications of the results.
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1.2 Historical Background

A complete review of the work done in the field of

acceleration stress is out of place here and will not be

attempted. Even investigations covering the short duration

regime haw produced a tremendous amount of work and fairly

comprehensive bibliographies exist, (see, for instance,

Refs. 1 and 2). Only work relevant to the present project

will be mentioned in an attempt to approach the problem with

the correct perspective.

The first systematic study of the problem was under-

taken in Germany during World War I1 when the dangers

associated with the ejection seat were recognized. The

work of Wiesehofer (Ref.3) and Richter (Ref. 4) had shown

that vehicle, or input, accelerations up to about 20 G could be

withstood. Examination of the breaking loads of various

vertebrae (reported by Ruff and Geertz in Refs. 5 and 6)

led to what was probably the first tolerance curve for head-

ward accelerations, indicating a plateau limit of 20 G.

Geertz studied the dynamics of ejection by considering two

masses coupled together by an elastic spring and noted the

importance of overshoot.

At the close of the war, British workers carried out

tests using vertical catapults which culminated in the design

of the Martin-Baker seat (Ref. 7) which develops approximately

20 G's over 0.1 sec. The work of Latham (Ref. 8) is

particularly noteworthy as he studied the response of a man-

seat system experimentally and theoretically using spring-mass

systems and an analog computer, and suggested optimum cushion

characteristics for use with ejection seats. A summary of

German and early British work on this topic is contained in

Reference 9.
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In the U.S.A., ejection seat design was pioneered by

various government establishments. Kroeger (Ref. 10)

studied the interaction of a man and his ejection seat with

a view to reducing the overshoot acceleration attained by

the man. Watts, Mendelson and Kornfield (Ref. 11) observed

experimentally the influence of rate of increase of accelera-

tion on the overshoot experienced by various parts of the

body. More recently the work of Hess (Ref. 12),.Kornhauser

(Ref. 13) and Brock (Ref. 14) has utilized the dynamic model

concept to study the influence of rapidly applied accelera-

tions on man and animals. The effect of restraint elasticity on

a subject's response has also been investigated (Ref. 15)

and the vibration studies of von Gierke and Coermann (e.g. see

Refs. 16 and 17) have illustrated the existence of resonance

phenomena in the human body, and contributed greatly to an

understanding of the physical processes involved.

More direct experimental measurements have utilized the

rocket sled in which animals and humans have been exposed to

accelerations approaching, and in excess of)end point

magnitudes. The work of Stapp (Refs. 18 and 19) and Beeding

(Ref. 20) in this area is particularly well known. In the

impact regime, simple drop tests have given useful data on

man's tolerance to impulsively applied forces. Many people

have engaged in this type of work and the results of Holcomb

(Ref. 21) and Swearingen (Ref. 22) are of particular interest.

At Stanley Aviation, experimental work associated with

the B-58 escape capsule development program indicated that the

dynamic response of the human was extremely important and

accelerations measured on test subjects indicated that

accelerations far in excess of the normally accepted tolerance

levels could be withstood if the application time was extremely
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short. Theoretical studies by Payne (Refs. 23 and 24)

showed that a simple mechanical model of the human body,

consisting of an elastic spring-mass system, could be used

as a basis for a theory to explain and correlate experimental

data, and his work laid the foundations of the present study.

A brief summary of the dynamic model technique and its

application to the analysis of human tolerance to acceleration

was given in Ref. 25.

1.3 Choice of a Dynamic Model

Medical research has shown that when the human body is

subjected to impulsive or steady state forces, deformation

and displacement of the structural components and organs occur

which result from forces generated within the body. The

transmission, amplification and attenuation of these internal

forces must result from basic processes that can be explained

by the laws of physics, but the effects, and therefore an

understanding of the effects, are masked by the complexity of

the human body, the limitations on the type of experiment that

can be performed, and the complicated subjective response of

the subject.

Taking a broad view, the human body consists of a bony

structural skeleton, held together by tough fibers, which

provides mechanical support and a lever system on which the

muscles act. The slightly curved vertebrae or spinal column

is the basic structural component and consists of a number

of vertebrae acting as load carrying elements and separated

by supporting tissues which act as shock absorbers and

connecting links. The rib cage and abdominal cavity contain

the visceral organs (heart, lungs, liver, etc.) which are fairly

massive components, suspended freely by connective tissues from

a muscle and bone support. The basic constituents such as bone
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tissue, ligaments and muscle exhibit properties familiar to

the engineer, such as elasticity, compressibility, shearing

and tensile strength. In addition, when the body is exposed

to comparatively low frequency vibrations, resonances occur

within the body which can be observed directly and by the low

tolerance level of the subject to a particular frequency of

vibration.

It appears likely, then, that the motions induced in the

body by rapidly applied accelerations can be explained by

considering the elements of the body as mechanical systems

exhibiting elastic properties. At the same time, because

of the complexity of the body structure, a complete description

of body response in terms of integrated mechanical models

is not possible at this stage. However, a start has to be

made somewhere and it is logical to investigate the motions

of a simple spring-mass system which is known to exhibit

dynamic response characteristics similar to the human body.

For instance, a man subjected to a headward acceleration along

the spinal axis (which is known to frequently produce spinal

fractures) can be represented by a single spring-mass system

where the spring has stiffness characteristics similar to the

spine and the mass approximates that of the man. The motion

of the spring-mass system for a given input acceleration can

be mathematically predicted with accuracy, and if reasonable

correlation can be obtained between the theory and experimental

observations made with a man, the model can be used as a basis

for predicting human tolerance to arbitrary acceleration inputs.

An improved model would include mechanical components (dampers)

to simulate the damping effect of the human body,. A further

refinement can be obtained by employing multiple spring-mass

systems to represent various parts of the body.
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The mechanical model consisting of one or more spring-

mass systems can therefore be regarded as an approximate analog

of the human body for studying response to short duration

accelerations, but it is in no way a true representation, and

regarding it as such may be misleading. It will only predict

gross effects and relies on the establishment of certain criteria

obtained from experimental data before it can be used. Even so,

it should prove a powerful tool in the analysis of acceleration-

time histories and the evaluation of techniques for increasing

human tolerance levels. The actual model used is not so

important as the fact that certain equations can be deduced which

explain the existing experimental data and lend themselves to

the prediction of future events.

2.0 Existing Data

2.1 Experimental Background

A variety of experimental facilities have been used in

an attempt to establish the acceleration levels to which man

can be subjected before some form of physical injury results.

These include rocket sleds, catapults, shake tables and drop

test facilities. When human subjects are used the tolerance

level is governed by the reaction of the test subject to a

variety of conditions and it is possible that the actual

upper limit may be considerably higher than that determined

from voluntary exposure. The severe injury threshold has

been investigated with the use of animals, but some caution

should be used in applying these results to humans because of

physiological and psychological differences. The analysis of

accidents has given some information on the human injury

threshold, but the conditions governing these cases are far

from controlled.
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The main difficulties in interpreting experimental data

are; correct interpretation of the results of measuring

instruments, the effect of seat and harness configuration,

lack of standard acceleration input patterns, orientation

of the subject, differences in response of individual subjects

and the often unreproducible nature of the experiments.

Qualitatively, experiment has shown that the major factors

influencing human tolerance to short duration accelerations

are:

(a) direction of application of input

(b) magnitude of the input acceleration

(c) duration of the input

(d) rate of application of the acceleration ("rate of onset")

(e) orientation of the body

These pioneer experiments, often carried out at great risk to

the volunteers, have produced tentative values for human

tolerance levels, but prediction of tolerance is still an art

rather than a science.

The useful application of a dynamic model depends on

experimental data and all the known results have been

consulted in the course of the present investigation. Wherever

possible, data referring only to properly restrained subjects

in rigid seats and subjected to acceleration forces near the

major directional axes has been used. The work of Stapp

and his successors at Holloman A.F.B. has constituted the main

source of information, but the cooperation of all persons and

agencies engaged in this field is acknowledged.

2.2 Present Tolerance Limits

In 1959, Eiband (Ref. 2), realizing the need for a

critical survey of the status of experimental data, made a

comprehensive survey of the existing literature. He
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approximated the form of the input acceleration to a

trapezoidal pulse (see inset of Fig. 2) and used the plateau

duration and magnitude as the two significant variables.

Plotting vehicle (input) acceleration in G's against duration

time he produced suggested tolerance curves based on the

more reliable experimental data. Two of these curves,

referring to accelerations applied in the headward and

backward directions, are reproduced in Figures 2 and 3.

These curves found a ready application amongst designers

and have proved invaluable, but still suffer from certain

drawbacks. Inspection will show that there is a considerable

unknown area between the region of voluntary human exposure

and the known region of injury. In the headward case, this

unknown area covers over 20 G in the ordinate, which includes

the region of most interest today. In addition, the boundaries

are not particularly well defined and a few more reliable points

might well change the general shape of the curves, particularly

in the impulse region. The method of analysis of the results

was in no way rigid as the deduction of a plateau level and

duration time from a complex acceleration trace is no easy

task and various combinations of the two parameters are equally

correct. The five hog points shown in Fig. 2 were apparently

obtained from a single experiment which is not particularly

valid, since the experiment represented an end point. The

reverse argument is also true since it is difficult to fit

criteria based on a trapezoidal input to the complex acceleration-

time histories encountered in practice.

Included in Figure 2 is a tolerance curve based on German

data relating to compressive strength tests performed on the

human spine (Ref. 5). This information was used by Ruff to

calculate the static load necessary to cause rupture and used

to define the "plateau" region of the tolerance curve. In the

impulse region, dynamic considerations led to the linear tolerance
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line similar in shape to that suggested by Eiband. The Ruff

curve estimates tolerance limits at approximately half the

input values resulting from Eiband's work.

The general form of these curves merits some comment.

It can be seen that for duration times up to 0.01 sec. the

tolerance level drops off linearly (log - log scale) as the

duration time increases. This can be explained in terms of

dynamic response, since the acceleration achieved by the man

takes a finite time to develop. When full overshoot is attained

(at about 0.01 sec.) any further increase in the duration time

does not increase the man's response for a given input level,

until the "long" duration regime is approached when hydraulic

effects become noticeable and reduce the tolerance level still

further.

The curves published in the Handbook of Instructions for

Aircraft Designers (H.I.A.D.) contain the human tolerance

limits that usually have to be met by present day aircraft

designs. This publication (Ref. 26) and its derivatives

(e.g. Ref. 27) have been the subject of considerable discussion

on the validity of these curves (see for instance Ref. 28) of

which the one pertaining to headward and backward accelerations

is shown in Figure 4. It certainly appears that the H.I.A.D.

curves should refer to the vehicle rather than the man, since

they do not take into account the man's dynamic overshoot.

Inconsistencies in the definition of time when referred to rate

of onset and duration time are also apparent, and the inter-

pretation of allowables in the short duration time region

containing the rate of onset curves is impossible. Further,

although "rate of onset" is important, it will be shown later

that it is not a limiting criterion.
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This discussion of the existing information shows that the

presently accepted human tolerance levels to short duration

accelerations leave much to be desired, and one merit of the

analytical approach is that it forms the basis of a more

consistent definition of tolerance levels and lends itself to

the study of any type of acceleration input. The method of

applying the dynamic model to this end will be described later.

3.0 General Principles of the Dynamic Model

3.1 Physical Interpretation of the Model

The dynamic model proposed as a basis for an analytical

study of the tolerance of the human body to short duration

accelerations is a spring-mass system composed, in its

simplest form, of a mass m (the equivalent mass of the man)P
attached to a spiral spring considered to have zero mass.

This basic model is illustrated in Figure 5(a). The spring

exhibits elastic properties in that it tends to return to an

equilibrium point when a displacement is introduced into the

system. When a displacement is induced, the restoring force

developed in the spring is proportional to the displacement or

deflection and the factor of proportionality is called the

spring constant (k). Thus the restoring force F for a given

deflection E can be written

F = kS

If, after displacement, the spring is allowed to move

freely, it will oscillate about the equilibrium point with a

certain fixed amplitude (maximum deflection), exhibiting

harmonic, sinusoidal motion. The number of complete

oscillations or vibrations per second is the frequency (W)

which is related to the spring stiffness and mass by the

expression
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As a result of its motion, the system possesses an internal

velocity which is the rate of change of deflection with time

("&/c-t ) and referred to as the spring velocity in this

report, and an acceleration or rate of change of velocity with

time ( t t&t" ) which is always towards the equilibrium

point. The spring velocity and acceleration can be interpreted

as the velocity and acceleration of the mass with respect to

the base of the spring. The usual sign convention is that

the deflection is positive in compression and negative in

extension.

When an acceleration input is applied to the base of the

spring, the system moves in such a way that the mass accelera-

tion relative to some fixed axes is the resultant of the input

acceleration and the acceleration resulting from the spring

deflecting. The complete motion of the mass is best

illustrated by a specific example.

In Appendix B the equations governing the motion of a

single spring system subjected to a step input acceleration

are developed, for the case of a linear spring(force directly

proportional to the deflection). Solution of the equation

of motion leads to the following expressions for the deflection,

velocity and acceleration of the spring (Equations B.7, B.8,

B.9 respectively).

deflection C-COE

velocity 2! a WE
CL~

acceleration SZE -O(C•

where 0( is the step input acceleration and t represents time.
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These expressions are plotted in Figure 6.(a) to (c) and

can be interpreted as follows. The deflection of the spring

(defined as the difference between the unloaded and loaded

length) is zero at time zero and again at a time represented by

cut =201 and is never negative for this type of input. The

maximum value of 2/w is reached when (IAt = I7 . The spring

velocity is essentially a sine wave of amplitude 1/k) having

a zero value initially and at maximum deflection. The spring

acceleration starts off equal to the input acceleration (but in

the opposite sense) and is directed towards the spring base.

It then decreases to zero at the point in time when the system

is in equilibrium (force developed in the spring equals the

input force) and the velocity is a maximum, reverses its direc-

tion and peaks at Wt = T and is then in the same direction

as the input acceleration. It then decreases to zero again

when the velocity builds up to a maximum in the negative

direction.

The resultant mass acceleration (yj) contains the two

components - spring acceleration and input acceleration - and

from Equation B.l0 is given by

The spring acceleration is in the same direction as the input

for % ( toE < 35/Z so in this region the resultant mass

acceleration is greater than the input, a condition known as

overshoot. In fact the peak value of the resultant mass

acceleration, which occurs when wt = ii , is twice the input

acceleration, which is the 100% overshoot case. The motion

of the spring continues with time in this manner, and the mass

acceleration experiences a succession of maxima at W= i-, 37,5,7

etc. until the input is removed.

At the onset of the applied acceleration the spring stores

up potential energy until it carries a load equal to the increase

in "weight" of the mass. At this stage the mass still has
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kinetic energy and the spring continues to compress until

this is destroyed, at which point the spring deflection and

mass acceleration attain maximum values (spring fully compressed)

and all the internal energy is in the form of potential energy

of the spring.

The maximum mass acceleration (from Equation B.2)is given

by

when there is no damping present, so the maximum mass accelera-

tion, or the maximum spring deflection is indicative of the

peak response of the system. Since the spring-mass system is

analagous to the human body, a correct choice of spring frequency

(w) corresponding to the relevant part of the body under

investigation enables the mass acceleration or spring deflection

to be calculated (for a given acceleration input), which can

be taken as a measure of the dynamic response of the man. If

criteria can be developed for the values of yp and/or S that

correspond to some end point in the man, the model can then be

used to predict tolerance limits. The necessary correlation

can be obtained from a study of the available experimental data.

3.2 The Influence of Damping

Resistance to motion is always present in any system and

the effect is normally referred to as damping. When the

motion is vibrational by nature, as in the case of a spring-

mass system, the presence of damping successively reduces the

amplitude of the vibration until the motion is completely

eliminated. Typical commonplace examples of damped motion

are the diminishing amplitude of a pendulum swinging in air

due to the air resistance and the decay of electrical vibrations

in an oscillatory circuit resulting from the resistance to

electron motion. Whenever resistance to motion is present,

energy is dissipated (usually in the form of heat) and the

system gradually runs down.
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In the human body, vibrations set up in the various

elements will be damped by the surrounding matter and a

mechanical analog of the body should allow for these effects.

The mechanical resistance of the body causes viscous damping,

which is akin to that obtained with a fluid dash pot, which

can be regarded as consisting of a loosely fitting piston

moving into an oil-filled cylinder. The dash pot mechanism

is included in the spring-mass system to represent all the

damping present as shown in Figure 5.(b). The mechanical

influence of the dash pot is to produce a resistive force

which is proportional to the velocity of the mass, so that

F = k9

where t is the mass velocity resulting from the spring motion

(spring velocity) and K is called the damping constant. The

damping coefficient (C) is the quantity normally used and this

is related to the damping constant (K) by the expression

k

As explained in Appendix E, three damping regimes exist.

These are critical damping (C = w), dead beat ( C> W ) and

sub-critical damping (C < 4 ). The latter case is of

importance in the human body where the damping is small but not

negligible.

When damping is included in the spring-mass system, its

main influence on the output is to reduce the vibrational

amplitude and the mass acceleration so that, generally, damping

is beneficial. Tolerance criteria can again be applied to

the model, but some ambiguity is introduced into the definition

of tolerance. The mechanical quantity corresponding to the

observed physiological effect can be represented by the mass

acceleration, which is a measure of the total force transmitted

through the system, or the strain (proportional to deflection)
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r'esulting from the force developed in the spring alone.

At this stage, it appears that the criterion adopted depends

on the part of the body concerned; thus, the latter criterion

is more reconcilable with the physiological facts for massive

organs with elastic attachments, but the former might be more

applicable to the spinal mode where crushing forces on the

individual elements are important.

A more detailed discussion of the influence of damping

will be found in Section 4.

3.3 Multi-Degree of Freedom Systems

In dynamics, a system in which the motion is specified

by only one coordinate is said to have one degree of freedom.

The single mass system described above fulfils this condition,

since the motion of the mass relative to the spring base can

be described by one coordinate. Generally, the number of

degrees of freedom is the same as the number of masses contained

in the system, so the models shown in Figure 5.(c) and (d) are

termed two and three-degree of freedom systems respectively.

When the human body is subjected to an acceleration input,

more than one part of the body can be set in vibration. The

particular mode excited depends on its frequency and the dura-

tion of the input. Thus, low frequency modes are slow to

excite and require comparatively long input durations before

they produce any noticeable effects. Shake table tests, where

human subjects have been exposed to sinusoidal inputs of various

frequencies and amplitudes, have shown that the human body

exhibits two distinct low frequency modes in addition to the

much higher frequency spinal mode.

Although a dynamic model cannot give an exact representa-

tion of the body, it should at least contain elements represent-

ing the major vibrational modes. For the sitting man it seems
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likely that three mechanical systems are sufficient to explain

the important features of response to short duration inputs,

if the arms and head are assumed perfectly restrained. There

is, then, a need for refining the basic dynamic model by

including more degrees of freedom. The theory of a two-degree

of freedom model is developed in Appendix J and that for a

three-degree of freedom model in Appendix K. The mathematics

is naturally more complicated, but the objects are the same

in that the deflections developed in each spring and the

dynamic response of the mass associated with each system must

be evaluated. Using multi-degree of freedom models it will

be possible to investigate the response of various parts of

the body simultaneously and to study the influence of inter-

actions between the modes. The model is quite general in that

values of mass and spring frequency may be assigned to fit a

particular problem. In this way, the spinal column may be

considered as a number of spring-mass systems in series which

can be built up to include the results of experimental measure-

ments made on vertebrae. This application has been attempted

with the two-degree of freedom model with some degree of success,

but it might well be that over complication leads to less

instructive results.

3.4 Correlation with Experimental Data

The equation of motion of a single degree of freedom

model with a linear spring and no damping is derived in

Appendix B (B.5) and can be written

* = wt8,*

For the general case of an arbitrary acceleration input this

equation can be solved in a step-by-step fashion to give the

variation of the spring deflection with time. The spring

deflection can then be related to the resultant mass accelera-

tion, since yp = W •so that a time history of the output
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acceleration can be obtained corresponding to the response of

the man. It is now necessary to establish a maximum value of

the mass acceleration that can be tolerated before an end point

is reached. This can be done by analyzing the input accelera-

tion traces of the available experimental data, obtaining the

relevant mass accelerations and correlating these with the

medical histories of the test subjects.

A more direct approach is available if the results of

Eiband (Ref. 2) are used as a starting point. The data

plotted in Figure 2 indicates that, in the "plateau" region, the

upper tolerance level based on the vehicle acceleration is about

40 G. Since the results quoted by Eiband are limited to tests

that used rigid seats and good restraint, the vehicle accelera-

tion can be taken as the input acceleration to the model. It

will be shown later that the "plateau" region corresponds to

duration times that allow 100% overshoot in the ouput of the

dynamic model used for headward accelerations. This means

that the output is exactly twice the input, and using the

input of 40 G taken from Eiband's curves, this implies a

criterion of 80 G on the mass acceleration before an end point

is reached.

The frequency of vibration of the particular part of the

body under consideration must also be known. In some cases

this can be measured directly from vibration tests but, for

the headward case mentioned above, no such results are

available. However, a value of the spring frequency relevant

to the dynamic model when used to analyze spinal inputs can

be obtained indirectly by applying the results of the

mathematical analysis to Eiband's results in the impulse region.

Impulsive inputs are considered in Appendix D and Equation D.23

gives the maximum mass acceleration (G ) attained for anp

impulsive input of G lasting for a time A t, viz. G (max) = G C W t.c p c

This equation holds for At < 2. Taking logarithms of each
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side gives the relationship

C1, -a~ "

Co-

which represents the equation of a straight line of slope -1,

and implies thatif log G were plotted against log a t ac

series of straight lines of slope -1 would be obtained, their

position relative to the time axis being governed by the

value of log G (max). Eiband presented his results in just

Li
this way, and it is found that his points, based on hog data

do fall approximately on a straight line. Accepting a value

of 80 for G (max), and fitting the above equation to Eiband'sp

results gives a value of W = 280 rad/sec. (approx.) or roughly

44 cycles per second.

Bearing in mind the accuracy of the Eiband curve, it is

possible, therefore, to evaluate the coefficients appearing

in the equation of motion and to deduce a criterion for the

maximum allowable response of the spring-mass system. One

of the objects of this research program was to collect the

available experimental data in an attempt to define the

dynamic model more exactly and test its usefulness as a

method of analyzing the tolerability of arbitrary acceleration

inputs.

4.0 Linear Systems

The response of a spring-mass system to a given input

depends on the way in which the restoring force develops in

the spring with change in deflection. If equal increments

of deflection produce equal increments of force, the spring

is said to possess linear characteristics and a plot of force

against deflection produces a straight line (see Figure B.l(b)).

The force-deflection relationship for a linear spring is,

F -
where k is the spring stiffness, or~in acceleration units,
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where Wo is the spring frequency. It is known that certain

parts of the human body exhibit non-linear characteristics at

the higher input amplitudes, but an approximation to a linear

system can often be made. Considerable progress can be made

on the assumption of a linear spring system and the mathematics

is simplified considerably.

4.1 Characteristics of Single Degree of Freedom System

The response of a single degree of freedom model will be

investigated analytically using various types of input accelera-

tions. The equation of motion for an undamped system was

quoted earlier as

= +S

This is an ordinary second order differential equation describing

the variation of the deflection (S ) with time. The input

(yc) can have any arbitrary variation with time, but a closed

form solution of the equation of motion is possible only if

the input-time relationship can be represented in some simple

mathematical form. The response of the dynamic model to a

number of simple acceleration inputs is examined below. This

simple approach gives important qualitative results and can

often be used as an approximation of a practical case.

4.1. Continuous Step Input

If the applied acceleration jumps instantaneously to some

finite value (O() at t = 0 and remains at that value indefinitely,

the input can be represented by

= O

and is termed a step input. This case is analyzed in Appendix B

and the relevant equations for zero damping are

Equation of motion (Equation B.6)
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Spring deflection (Equation B.7)

Resultant mass acceleration (Equation B.10)

where yp represents the resultant mass acceleration.

Maximum mass acceleration (Equation B.16)

$=

The resultant mass acceleration is analagous to the

response of a human when subjected to similar input conditions,

and is illustrated in Figure 7. (see also Fig. B.2) in non-

dimensional form. It can be seen that the output is less

than the input for values of AAJ• 11/, is equal to it when

Lot T1 /2 ) and for values of LOt between T1/2, and 3"r•,

the output is always greater than the input. In the latter

case the output acceleration is said to overshoot the input

acceleration. When cwi = 71 , the mass acceleration is

exactly twice the input which represents 100% overshoot.

The output reduces to zero at a time represented by Wt=•

and thereafter the pattern is repeated in a cyclic manner.

When some initial deflection is present in the spring the mass

acceleration is given by B.11 as

In deriving this equation it was assumed that the influence

causing the initial deflection made no force contribution to

the motion of the mass. It can be seen from Figure 7 that

such a disturbance increases the mass acceleration for wt < Tl/I

and S w t > 31/2 etc, but in the region where the mass

acceleration is a maximum, the value is actually reduced and

the peak mass acceleration is given by

( y) go _ 2
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The explanation of this reduction is that, when an initial

deflection is present, the compression Ss is attained without

a velocity being introduced into the system, so that less

kinetic energy is available and the maximum deflection and mass

acceleration are reduced.

If the disturbing force acts throughout the acceleration cycle,

(contributing an acceleration G') the peak mass acceleration is

given by (! x) Z

so that, in this case, the peak mass acceleration is increased

by the value of the steady G'field. 4

Thus, preloading in a direction opposite to that of the

input acceleration can alleviate the peak body response if the

loading force is removed when the input reaches the same value,

which would occur if an inelastic restraint was employed.

In practice, of course, this improvement is difficult to achieve

due to such effects as curvature of the spinal column, rebound,

and the presence of multi-directional accelerations.

When damping is included in the system the equation of

motion contains an additional term due to the force exerted on

the mass by the damper, as explained in Appendix E, from which

the following have been extracted.

Equation of motion (Equation E.3)

where C is the damping coefficient

Resultant mass acceleration (Equation E.9)
e C

where Lo1 W7- - C' and COO is the damped frequency

Maximum mass acceleration (Equation E.11)
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where t _- and the angle is in the

second quadrant

Spring deflection (Equation E.5)

These equations refer to the sub-critically damped case

where C&A > C . The presence of damping terms modifies the

output of the single degree of freedom model, as shown in

Figure E.2, where it can be seen that maximum value of the mass

acceleration is reduced, but it is achieved earlier. Figure 8

compares the response of a damped system based on the total

force acting on the mass (proportional to mass acceleration)

and on the spring strain (proportional to deflection) given by

F = k 6 so that

F

which has a maximum when 4 Tt = .

Up to maximum compression, for a given damping ratio C1W

(where C/w = 1 represents critical damping), the acceleration

based on the force developed in the spring is always lower than

that based on total force and so represents a more optimistic

tolerance criterion. Thus a study of the response of the

damped system to a continuous step input indicates that a

tolerance curve based on input accelerations will be less severe

in the plateau region (full overshoot always attained) than the

undamped case, and that allowables based on total force will be

lower than those using spring force as a criterion.

4.1.2 Other Continuous Input Functions

The other simple input forms treated in Appendix B are;

the linear ramp represented by Yc =/3 t where P is the slope

of the function, and the paranolic input represented by Yc = rf7

These are mainly of academic interest in themselves, since an

input acceleration will not go on increasing indefinitely, but
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the solutions can be useful if the input approximates to either

form during the onset phase. In this case, the response to

either the ramp or parabolic function can be used for the

starting conditions to be used in the second phase. An input

function taking the form of. a ramp followed by a constant

function is quite common in practice, however, a direct solution

exists for this type of input as shown in Section 4.3.

The expressions for the appropriate mass accelerations

are

Linear ramp (Equation B.13)

Parabolic (Equation B.15)

4-.1.3.Rectangular Input

In practice, the input acceleration is applied for a short

time (At) only, and the mass continues to move after the

remova.l of the applied acceleration, just as a car continues to

move after the accelerating force has been removed. The peak

mass acceleration is usually attained at some time greater than

At, so the solutions of the equations of motion for t > At

are important. This case can be treated by considering an

input that rises instantaneously to some value o( , remains

constant for a time At and then becomes zero.

The response of an undamped single degree of freedom

system to a rectangular input is treated in Appendix B, where

it is shown that the resultant mass acceleration is given by

(B.18)

cK t
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where ý is a phase angle given by tan- and time

is measured from t = At.

The peak mass acceleration is shown to be (B.19)

rna.L)• = cK -s w AtI

This expression shows that the maximum mass acceleration depends

on the frequency of the system and the input duration time, for

a given value of oC . This dependency is shown in Figure B.5

of Appendix B, and Figure 9 illustrates the typical response

of the system for various input duration times. The output

can be less than, equal to, or greater than the input accelera-

tion, depending on the input duration. Hence, for small input

durations the response of the model is low and quite high input

accelerations can be tolerated. For the condition

k) i. e.WA < 3

the peak output acceleration is always less then the input,

and the tolerable input accelerations are always greater than

the critical value assigned to the mass acceleration. The

condition of 100% overshoot is given by

L4-

i.e. coA

so that for duration times greater than At = "/Wa the

tolerance level is independent of the pulse duration.

4.1.4.Impulsive Inputs

If the input duration time is extremely small, the motion

of the system is of an impulsive nature and may be assessed in

terms of velocity change since

impulse = force x time locity change

mass mass
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In this report the impulse region covers duration times

that are so short that full overshoot in the output response

is not achieved. The impulse region is also referred to

as impact and the short duration input acceleration are

sometimes called "spike" inputs, although the latter term

strictly refers to triangular shaped inputs.

The single degree of freedom system with no damping

is analyzed in Appendix D for the general case of a non-

linear spring. If n is put equal to unity, the equations

are applicable to the linear system discussed here. The

peak mass acceleration, from Equation D.21, can be represented

by

and depends only on the frequency of the system and the

velocity change introduced by the impulse, so that input

acceleration and duration times need not necessarily be

considered as tolerance parameters. However, these terms

can be introduced by writing the above equation in the form

(Equation D.23)

which is the relationship used in fitting the theory to

experimental data, as explained in Section 3.4. For a given

frequency, it is the area represented by .yc. *t that is

important. Equation D.22 of Appendix D gives the duration

limit over which the impulse theory is valid as

Z
Atc CO

When damping is present in the system, the peak mass

acceleration derived in Appendix E (Equation E.19) is

Ct8
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where the damping influence is contained in the e term,

and the time at which the maximum occurs is described by

from Equation E.18 where tan- 1 (0o/c ) and tan-I ( "Ol/c) are

in the third and second quadrants respectively.

If the force developed in the spring is used

tolerance criterion, the relevant acceleration is 02•

given by Equation E.16

to7" ax=wv eL

where t is now 2 •-)o) . The two criteria are compared

in Figure 10 for various damping values.

Using the deductions of Section 4.1.1 and the results

quoted above, allows the influence of damping on the general

form of the tolerance curve (based on total force) to be

determined. Figure 11 shows how the position of the tolerance

curve is affected by the choice of certain damping ratios.

It can be seen that, for damping ratios associated with the

human body (15 to 20%), the tolerance curve is moved up about

20% in the plateau region (- 8 G). In the impulse region the

tolerance line moves up with increasing damping until the

value C/w = 0.27 is reached (see also Figure 10), and then

back to the undamped line at C/a) = 0.5. This is due to the

fact that for C/W values up to 0.5 the maximum output occurs

after t = 0 (see discussion following Equation E.19) and some

energy is dissipated. For•/> 0.5 the tolerance curve moves

down, since the force is transmitted through the damper immediately.

Using spring strain as a criterion, the tolerance curve would

become less stringent as the damping increased throughout the whole

region. This is because the peak spring force is always reduced

when damping is present.
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4.1.5 Sinusoidal Inputs

If the applied acceleration fluctuates in a sinusoidal

fashion it can be represented by the expression

where Yco is the amplitude and A-L the frequency of the motion.

A continuous vibration of this form normally involves duration

times outside the range of the model consirTered here, but in

some cases a particular acceleration car be approximated by

the initial cycle or cycles of a sine wave.

The solution of the equation of motion is developed in

Appendix E. The expression for & (see Equation E.28) has

two distinct parts, one representing an oscillation of frequenc

(CJ) dependent on the parameters of the spring-mass system, and

the other describing a motion of frequency (42), the forcing

function. The former, known as the transient solution, is

given by

• 7. t¢ WOW

where tan- and Wj ý C' The part that

oscillates with the applied frequency is called the steady

state solution and is represented by

The output of the system is the resultant of these two terms

as shown in Figure 12. As time increases, the transient

term is gradually damped out due to the influence of the

term, the rate of attenuation depending on the damping

constant of the system.
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The steady state solution was used in Appendix E to obtain

the amplification factor (A) which indicates the amount of

overshoot in the output acceleration. This is given by

I
A=

A = I G4 -f.V +

This expression has a maximum when A72- i.e,

I

which represents the case of resonance. When no damping is

present, resonance occurs when XI = 0 and the amplification

can be infinite. Under these conditions very high output

amplitudes result for small input amplitudes, but the presence

of even a small amount of damping modifies the picture

considerably.

4.2 Restraint Effects

During the analysis of the experimental data it became

apparent that the results depended to a large extent on the

type of restraint used in the particular experiment. The

importance of good restraint has long been recognized in the

design of harness systems and practical experience counts

for a great deal in this field. Although outside the terms

of the present study, it was decided to make a brief investigation

of the influence of restraint on the output of the dynamic

model. Although the results are of a qualitative nature they

illustrate the usefulness of the model and provide pointers

for future work.

4.2.1.Seat Cushion Effects

The single degree of freedom system is modified to include

an elastic cushion by placinga spring in series with the one

51



representing the human body, as shown in Figure G.1 of

Appendix G. If damping is ignored the model can be

represented by a simple equivalent spring system where the

equivalent frequency Wois related to the two component spring

frequencies W (man) and W (cushion) by the following

expression (Equation G.4)

CO,1 + O

The cushion spring effectively reduces the overall frequency

of the system which implies that the response will be slower

and, for a given input duration in the impulse regionof

smaller magnitude (decreasing C4 moves the tolerance curve up).

This is true if the cushion does not bottom as shown by

Equation G.9 which gives the ratio

yp max (with cushion)

max (no cushion) -I + ?'
p

The maximum mass acceleration of the system is always reduced

by using a cushion, and the reduction is greater for small

values of CW (i.e. a soft cushion) which is illustrated

graphically in Figure G.2. For long duration times the full

100% overshoot is always attained and the cushion has no

effect on the output of the system or the tolerance curve.

If the cushion bottoms during the motion the mathematical

analysis proceeds as explained in Appendix G. The cushion

spring has to be restrained at some deflection given by 628

(deflection at bottoming) and thereafter the input is transferred

directly to the body spring. At the instant of bottoming any

kinetic energy of the cushion spring is transferred to the body

spring, only the potential energy being retained.

In the impulse region, it can be shown (Equation G.11)

that the peak mass acceleration after bottoming is

Ze
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where tv is the velocity change introduced by the impulse

and E is the energy absorption capacity of the cushion,
c

i.e. the potential energy ( i . • ) stored in the cushion

spring at bottoming. Comparing this equation with that

representing the output of the single (body) spring system

(Equation D.21)

it can be seen that the output is again reduced due to

attenuation in the cushion. The bottoming velocity can be

written

which is small for a weak cushion spring (W,3 and k. small)

and for large values of the body spring ( O and k, large).

The beneficial influence of the cushion in the impulse region,

even when bottoming occurs can be seen from Equation G.15

max (with cushion) _ I /,*A-

max (no cushion) : C VL

So, for a given velocity change, the attenuation of the impulse

depends on the energy absorption capacity of the cushion and

is independent of stiffness ratio.

When relatively long duration inputs are considered a

bottoming cushion can have very severe effects on human

tolerance. The solution developed in Appendix G gives the

maximum mass acceleration after bottoming as

This shows that for the condition

'- > + + L- -Lo Lo•3
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which is true for all finite values of the frequency ratio,

the overshoot can exceed 100% which represents a much more

severe acceleration imposed on the human than when no cushion

is present. Thus, large bottoming velocities are dangerous

and if bottoming must occur it should happen as early as

possible.

Summarizing, for impulsive inputs a cushion is always

beneficial and increases the tolerance level; for longer

duration inputs, the cushion has no influence unless it

bottoms, in which case considerable magnification of the

output can occur. These conclusions are presented, in

graphical form, in Figure 13 and Figure G.4of Appendix G.

4.2.2.Rebound

The phenomenon termed rebound can occur when the

acceleration applied to the occupant of a seat is suddenly

removed and the occupant is thrown into his harness system.

The undamped linear single degree of freedom model can be

used to analyze this problem as explained in Appendix H.

The body spring goes in to compression in the usual way

when the acceleration is applied to the seat pan and when the

input is removed after a time At, the spring returns to its

original position, but with a certain velocity. At this

stage, the body spring becomes inoperative and the restraint

spring starts to compress, decelerating the mass. From

Equation H.11 the maximum deceleration is given by

V ('XX)= - CkW - A

where (O& is the restraint frequency and 0( is the initial

step input. This expression is similar to that derived for

the impulsive input (Equation D.23 of Appendix D) but
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"W2 is now the important parameter. The ratio of the peak

mass accelerations imposed during the impact phase and rebound

respectively can be formed, viz.

y max (rebound) = o.

yp max (input) W1i

where CO, is the frequency of the body spring. The expression

for the mass acceleration in rebound can be maximized for a

particular input duration and "start of rebound" time to give

LtO2

Regarding WOand W-, as the equivalent man-harness and man-cushion

frequencies respectively, it follows that considerable amplification

of the input acceleration is possible, if the equivalent restraint

system is stiffer than the equivalent cushion system.

4.3 The Importance of Rise Time

An expression that often appears in the literature on

acceleration stress is "rate of onset of acceleration" which

is usually quoted in units of G per sec. Rate of onset has

frequently been used as a critical parameter in determining

human tolerance to abrupt accelerations and in some cases

test subjects have reported being able to sense different

onset rates. The dynamic model is based on the concept that

the acceleration response of the subject is the important

criterion and, in this context, the maximum input acceleration

and duration time are the important parameters. If the input

acceleration is less than half the allowable mass acceleration,

the peak mass acceleration will never exceed the critical value

regardless of the rate of onset (e.g. a step input where the

rate of onset is infinite). When the input acceleration is

greater than half the allowable mass acceleration, the over-

shoot is influenced by the rate of onset, but it is more

explicit to refer to the time taken to reach a certain plateau

or peak value, i.e. the rise time ty , since the frequency of
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the system (cycles per second) is also involved. The

definition of rise time will be clarified by reference to

Figures I.l(a) and (b). Rate of onset, in itself, does

not mean very much unless the peak input acceleration is

also specified, then - rate of onset x rise time = peak

input acceleration.

The simple case of an input consisting of a linear ramp

function followed by a constant is studied in Appendix I.

For zero damping, the model response is given by Equation 1.5.

/3 1.3 f C,..5w 4.i ,ý t

whereAS is the slope of the ramp function, i.e. the rate

of onset of acceleration.

When the ramp input is operative, i.e. before the

acceleration levels off, the mass acceleration is given by

Equation B.13 as

This function exhibits no maxima, only points of inflection

and the acceleration output has the form shown in Figure B.2

of Appendix B. The fluctuations of the output about the

input are governed by the values of W• and/3 , overshoot is

still present in the output, but is combined with an

increasing input to give the effect shown in the figure.

The important quantity is the degree of overshoot obtained

when the input acceleration has levelled off and remained

constant for a long time. This can be represented by

Equation 1.8 which gives
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where n is an integer and/3•r is the plateau value of the

input. The integer n enters the expression since sin

may be positive or negative, depending on the quadrant

containing the angle w:Y/Y h. It is shown in Appendix I

that for n 1,

and for n = 2

and so on. The above expression is plotted against WOt

in Figure 1.2 and the curve exhibits a series of humps.

For very small values of WtY (representing a short rise

time or a low frequency system) the overshoot is 100%; as

w ty increases,the degree of overshoot decreases eventually

reaching zero when the output equals the input. When wky

is increased further, some overshoot is again obtained, the

pattern repeating itself, but with rapidly decreasing

amplitude.

For a given system having a certain frequency LO , the

rise time of the input is, therefore, an important parameter

if the input exceeds half the tolerable output. For a given

rise time, a low frequency system will exhibit greater over-

shoot than a high frequency system. These theoretical

deductions have been further illustrated in the analog

computer studies reported in Section 7.0.

The theory indicates that, if the rise time is long

enough, very large input acceleration-can be tolerated.

However, it must be remembered that the present model is

limited to structural effects and a large rise time means a

long total duration, which involves other tolerance criteria.
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4.4 Application to Escape Systems

The limiting acceleration-time history that is

permissable, from human tolerance considerations, during

the ejection phase of an escape capsule or seat has been

the subject of considerable experimental research, and the

dynamic model will have important applications in this area.

Basically, the approach is similar to that described

in the general applications described so far, but the model

now consists of two masses coupled together by a spring

representing the occupant and his cushion (Figure F.1).

The theory is developed in Appendix F for impulsive and

continuous inputs. Equation F.8 gives the peak acceleration

experienced by the man for the zero damping case as

2 2F
e+ Mr

where F is the applied force (constant), mc is the seat, or

capsule mass, and m represents the occupant's mass. NowP

F is the acceleration obtained for the system as a
m +m

c p
whole, so the acceleration history calculated by regarding

the escape system and occupant as a rigid body can be used in

assessing the occupant's tolerance to the input.

During the acceleration phase, the occupant provides a

downward force on the escape device, modifying its accelera-

tion and it is shown in Appendix F that the ratio of the

peak accelerations of man and escape device is given by

yp (max) occupant

(max) escape device

Thus, the lighter the seat or capsule compared to the occupant,

the lower the relative accelerations, but the peak occupant
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output is always twice the value calculated for the combined

masses. When an impulsive input is considered, the system

can again be treated as a rigid body.

4.5 The Two Degree of Freedom Model

The single degree of freedom system does not predict

the decrease in tolerable accelerations in the higher duration

time region (from .07 sec. to 1 sec.). The quite rapid drop

in the tolerance curve suggests that a second lower frequency

mode exists, and this has in fact been verified by shake table

tests (Ref. 16). The predominant mode indicated by these

tests has a frequency of 5 cps. With two distinct modes

present, it seemed likely that a two degree of freedom model,

such as that illustrated in Figure 5(c), could be used to

investigate the dynamics of the body under the influence of

short duration accelerations. Since data on the dynamic

properties of various parts of the body is sparse, the

application of the model was limited to the following two cases:

1. The upper spring-mass system representing Vie
visceral mode of 5 cps, and the lower system
the spinal mode at 44 cps.

2. The upper spring-mass system representing the
thoracic vertebtae, and the lower system the
lumbar vertebrae, (the data given in Ref. 5 being
used for this application).

The mathematical analysis of the model is given in

considerable detail in Appendix J so that only the important

results need be quoted here. The solution of the equations

of motion were developed for the zero damping case in order

to reduce the algebra involved so that the influence of the

important parameters could be more readily seen. The
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solution for a step input is of particular interest, since it

yields all the important information about the response of

the model. Equations J.35 and J.36 give the deflections

where ,and .6, are the deflections in the upper and lower

spring and 60 and Wt$ are the uncoupled frequencies of the

upper and lower system respectively. .fl, and -0. are the

coupled frequencies and are given in Equation J.29 and J.30

by the expressions
W 

+.

411 $2

where OP", and m and m are the masses associated

with each spring.

Since damping has been omitted, it is permissible to
express the tolerance criterioa t as a limit on deflection in

either or both springst

Time histories of the deflections were obtained for a

range of values of the parameters Mn s and4q with the

w /r (the overshoot factors) were obtained from the resultse

The two applications are discussed separately.

1. Model Representinc the Viser ral and Spinal Modes

The spring q is taken as analagous to the spinal mode

and the low frequency visceral mode is represented by the

4o



spring p. For short duration inputs to the base of the

system the displacement of the mass m is quite small andq
so the deflection in the spring p is small, giving rise to

insignificant forces acting in opposite directions on the

masses m and m respectively. Hence, the force actingP q
on the mass m is virtually that of the single degree ofq
freedom system. As the input duration time increases,

so the displacement of the mass q increases, which in turn

increases the deflection and the force in the spring p.

This force is reacted back through the mass q to the spring

q, such that a larger force must be applied to the base of

the system for a given constant input acceleration. The

build up of forces within the system is revealed as

deflections of the spring q. A limit on this deflection

is used as the maintolerance criterion, which may be

related to the limit on acceleration used previously (80 0)

by application of the relationship t = &) • . Values

of " (max) were obtained for four ratios of m to mS-q p q
since the exact ratio is not known with any degree of

accuracy. Several maxima were obtained in the output

for each mass ratio and these values were used to construct

the curves shown in Figure 14. The first maximum occurred

at approximately t = 0.0114 sec. and was the same for

each mass ratio and equal to that for the single degree

of freedom spinal model. Hence, for times less than

t = 0.0114, the normal spinal headward tolerance curve

is applicable.

The ratio of m to m is quite important in thatP q

as m /m increases, so the tolerable acceleration decreases.

Neglecting damping, the mass ratio giving the best fit to

the presently available data is m = 1.0. However, for

m
q
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duration times of the order of .05 sec. or greater,

damping is important and with, say, 15% critical damping

in the spinal mode, and some 30% critical damping in

the visceral mode, then the curves corresponding to values

of _- 1.5 or 2 would probably give a better fit to

the experimental results.

Although these results diminish the duration of the

plateau region considerably, they are instructive in that

they give a probable explanation of the reduction in

tolerable G's for duration times of the order of .08 sec.

2. Application to the Upper and Lower Spine

The stiffness and mass data relating to the human

spine given by Ruff (Ref. 5) were used to estimate the

frequency ratio ("/•q, ) and mass ratio (1P/% ) for the

two degree of system representing the spine as two springs

and associated masses in series. Values of 0.67 for the

frequency ratio and 2.5 for the mass ratio were obtained.

The frequency ratio was assumed to be exact, but various

masratios in the region of 2.5 were assumed in view of

possible errors in Ruff's value. Using various values

of WOf (thereby fixing W$ ) and of mass ratio, the digital

computer was used to find maximum values of 6P and •&c .

For input values of 30, 35 and 40 G (corresponding to

the known tolerance levelsin the plateau region) values

of 6ý and 5$ were then obtained and plotted against

frequency for each value of mass ratio. Tolerance

criteria of Sp = 0.02 ft. and 6,ý = 0.033 ft. were taken

from Ruff's experiments on spinal breaking loads, and it

was assumed that the two parts of the spine failed

simultaneously, as indicated by Ruff's work. For the

three mass ratios used, this procedure yielded three pairs
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of frequencies (and three pairs of frequency ratios (z))

for each value of input acceleration. These frequency

ratios were then examined to determine which gave the best

agreement with Ruff's figure of 0.67. It was found that,

for all acceleration inputs, the frequency ratio corres-

ponding to a mass ratio of three gave the best agreement,

and these results are shown in Figure 15. The absolute

values of frequency obtained were then used to calculate

the coupled frequencies A.9, corresponding to input

accelerations of 30, 35 and 40 G, yielding values of 280,

300 and 335 rad/sec., respectively. The coupled frequency

(Xl,) should be the same as the frequency deduced for the

single degree of freedom model. However, experimental

results indicate that the tolerable input (plateau region)

is about 40 G, and the spinal frequency is approximately

225 rad/sec.

The results of this analysis are not very encouraging,

but do point the way for more detailed future investigations.

The work of Coermamnat W.A.D.D. might well provide more

detailed information on the mechanical characteristics of

the body that could be used in this type of analysis.

4.6 The Three Degree of Freedom Model

In the analysis of the two degree of freedom model, the

concept of a normal (or resonant) mode was introduced. The two

degree of freedom model was described uniquely by two such modes.

The three degree of freedom system may be described by three

normal modes and, in general, the number of normal modes required

for a full description of the unidirectional motion of a system

is the number of degrees of freedom it possesses. This in turn

Is (generally) the number of attached (but not rigidly attached)

masses comprising the system. In Appendix F a system of two
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masses joined by a spring is analyzed. The frequency ('u)

of oscillation of such a system is given by

")c + ") P

where Mc and Mp are the masses and k is the stiffness of

the connecting spring. The effective mass of this simple

system is VCMI and is termed the inertia of the system.

Several masses, each connected to the adjacent mass by a

spring and a damper will now be considered. For convenience

of referencejthe number of masses shall be n + 1, hence the

springs and dampers number n of each. Such a system has n normal

modes, since the first does not contribute to the number of

degrees of freedom. For each normal mode there exists an equiv-

alent mass or inertia, and the general motion of the system is

a combination of these normal modes of vibration, as was

illustrated in the solution obtained for the two degree of

freedom model. Generally, it is found that a system can be

described practically by a relatively small selection of these

modes; often only one mode, (that with the lowest frequency,

referred to as the first mode) will suffice. For example,

the response of a conventional fixed wing airplane to aileron

control, and the phenomenon of aileron reversal, can be explained

adequately by restricting the deformation of the airplane to its

first wing torsion mode. Naively, perhaps, the supposition is

that the response of a complex structuresuch as the human body,

to a very abrupt acceleration (less than .05 sec.) can be

represented adequately by the first spinal mode, and for longer

duration accelerations by the introduction of the first and

second visceral modes. Each mode is characterized by an

inertia, a frequency and a damping constant. It is this

characterization that allows the representation of the human

body by a simple mass-spring system, or a combination of such

systems.
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The development of a three degree of freedom model

representing the human body subject to spinal accelerations

was considered sufficient to demonstrate the usefulness and

limitations of this approach.

Shake table tests on human subjects have shown that two

distinct low frequency modes are present in the human body.

The frequencies of these modes are five and ten cycles per

second respectively (these frequencies were suggested by

Dr. Coermann of W.A.D.D., and are based on experimental

evidence). Although Coermann measured total body modes, the

spinal frequency is relatively high, and the two low frequencies

may be regarded as the natural frequencies of the visceral masses.

This assumption leads to the model shown in Figure 5 (d), which

represents a mechanical analogy of the spine and visceral masses.

The analysis of such a model is dealt with in considerable

detail in Appendix K. The deflection ( 8,) in the spinal

spring is obtained for a general rectangular input, and for an

impulsive input. A solution for a sinusoidal input is also

developed, using the concept of complex numbers to reduce the

algebra involved.

(a) Solution for a Rectangular Input Acceleration

The general solution for a rectangular input is given

in Equations K.32 (a) and (b) with damping included in each

mode. The solution for a step input, which is a special

case of the rectangular input analysis, is useful since it

includes all the maxima that can be obtained with various

duration rectangular inputs and yields sufficient points

to obtain an accurate graph of the tolerable accelerations.

The solution for the step input is represented by Equations

K.32 (for -, ) and K.37 (for S0 ) and the constants
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contained in these equations are obtained from K.31

and K.37.

The criterion for injury is expressed as a limit

on the force (t ,) exerted by the spring and damper

of constants k, and 2K, respectively, on the mass Ms

i.e.

This limit may be expressed in terms of the acceleration

Time histories of were obtained for several values of

the damping coefficients CL with the aid of a digital

computer, and the maximum values obtained by inspection.

The values of tolerable input accelerations given in

Fig. 16 were obtained by putting b, (max) = 80 G, and

dividing this by each maxima of , in turn. The zero

damping case does not differ significantly from the

results plotted in Fig. 14 for the two degree of freedom

model, and the conclusion is that the two degree of freedom

system is sufficient for accelerations of less than say

one second. The effect of damping is very pronounced for

duration times where the low frequency modes are important.

From the similarity of the undamped case to that of the

two degree of freedom it is not unreasonable to suppose

that damping will have a similar effect upon the tolerable

accelerations predicted by the two degree of freedom model.

(b) Solution for a Sinusoidal Input Acceleration

The response of a spring mass system subjected to a

sinusoidal input acceleration can be divided into two

parts. (See Appendix E).

1. The transient response with a frequency

dependent upon the parameters of the system.
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2. The steady state response with the frequency

of that of the input acceleration.

When tolerance to long duration inputs is considered,

only the steady state response is important.

The equations governing the three degree of freedom

model are developed in Appendix K. The application of

this model to the human tolerance curve involves calculating

the ratio R of the output to input amplitudes, given by

(K.46).

where 4dc is the amplitude of the input acceleration and

and Vj are the real and imaginary parts respectively

of the output amplitude Aj and are defined by Equation K.45.

The ratios R,, R. and R., corresponding to the three

modes of vibration, were calculated on the digital computer

for various input frequencies (1 to 17 cps) and damping

values of 15% critical in Mode 1 (spinal), 3% in Mode 2

(10 cps visceral), and 25, 30 and 35% in Mode 3 (5 cps

visceral). These values of damping coefficients were

suggested by a survey of experimental results.

The low frequency criteria were taken from the

tolerance curve of Ref. 16 (Fig. 21), which is replotted

in Fig. 17a. One method used the tolerable input

corresponding to the first minimum (point A) to obtain

a reference amplitude for both low frequency modes. In

the second method, points A and B were used to define

reference amplitudes for Modes 3 and 2 respectively. The

tolerance level for the high frequency mode was established by

assuming a critical allowable deflection (g,) that gave
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the best fit with the curve of Ref. 16. The value of

6', so obtained (Fig. 17.b) was 0.01 ft., which is about

20% of the spinal breaking deflection for steady loading,

but it must be remembered that the curves of Ref. 16 are

based on voluntary tolerance (greater than 20 sec. duration).

The agreement obtained between the theory and the

experimental results of Ref. 16 is not particularly good.

However, the experimental results may be at fault, rather

than the theory, and an evaluation of the usefulness of the

three degree of freedom system should await further develop-

ments in both the theoretical and experimental fields.

5.0 Non-Linear Systems

It is known that certain parts of the body respond in a

non-linear fashion in certain force ranges so that the analogous

linear spring system represents an ideal case. In a non-linear

system, equal increments of applied force do not produce equal

increments of deflection and a force-deflection plot does not

produce a straight line. Non-linearity in the human body shows

up as increasing effective stiffness as the applied force increases.

Mathematically, a non-linear spring can be represented in a

variety of ways, but a good approximation is to represent the

force-deflection characteristics by the relationship

F = k'sh

where n is an integer. The equation of motion now takes the

form

The solution of this equation is developed in Appendix C for

a step input and for an impulsive input in Appendix D. The

peak mass acceleration for a step input is from Equation C.10
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and for the impulsive case (Equation D.16)

K

where =W,- . Knowing the maximum allowable value of o(

in the plateau region from experiment and assuming a value

of n, the step input formula gives a value for the allowable

peak mass acceleration. Now the expression describing the

impact case can be rearranged to give

h-&-I

which can be used to represent the tolerance curve in the

impact region of Figure 2 for any value of n, since

A plot of log c against log At would give a straight line

of slope -1, the actual position of the line being controlled

by the value of the remaining expression in the above

equation. Using the allowable value of the mass accelera-

tion (n + i)C', where 0ý is obtained from experiment

(plateau region of Figure 2), results in certain values of

S (or W ) corresponding to the chosen value of n. For

headward accelerations, drop tests have shown that the

critical impulsive velocity change is ]1 ft/sec., and using

the maximum permissible spine deficction of 0.05 ft., as

deduced by Ruff (Ref. 5), values of the "equivalent linear

spring frequency" can be deduced corresponding to various

values of n. Such a value would correspond to a linear

model that would predict the correct conditions at maximum

deflection. In view of what has been said above, and the

accuracy of the available experimental results, it is

considered that a strictly linear model (n = 1) is adequate

for the present studies.
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6.0 Dirital Computer Studies

The equation of motion for the undamped, linear single

degree of freedom model is

where the input acceleration Yc can take any form, depending

on the conditions of the case under consideration. For

simple input forms that can be approximated by a concise

mathematical formulae, the equation oF motion can be solved

by analytical methods, as demonstrated previously. When the

input is of a complex nature - the case usually met in

practise - the solution must be obtained by an iterative or

step-by-step procedure. Such a procedure can be exceedingly

tedious and time consuming if performed by hand, so one

normally seeks the aid of an automatic digital computer.

The Stanley Aviation IBM 1620 computer has been programmed

to solve the equation of motion of a linear single degree of

freedom system for any arbitrary acceleration or force input.

The program uses the Fortran system and is quite general in

that the coefficients relevant to the particular problem can

be used. The equation of motion is solved for the deflection

(C ) which is then related to the mass acceleration ( p) by

the expression

The results are presented on a card output, in a form

suitable for automatic plotting on a Benson-Lehner data

plotter, and contain information on G, , ( and Y against

time. The machine employs a time interval that is antomat-

ically adjuisted to give the desired accuracy of + y% in the

result, which rreans that quite complex inputs can be handled.
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The time involved in obtaining a solution using the computer

varies from 15 to 30 minutes, depending on the complexity of

the input acceleration-time history. The mass acceleration-

time plot is studied to establish if the peak acceleration

exceeds the allowable value for the particular direction of

applied input.

A typical analysis is shown in Fig. 18. The example

used is taken from the test program being carried out on the

Daisy Track sled at Holloman A.F.B. The subject was a

male bear (Run No. 390) fully restrained, and the acceleration

was measured on a rigid portion of the sled and no cushion

was present. The output shown in Fig. 18 represents the

response of the equivalent spring-mass system, using a frequency

of 278 rad/sec. (spinal mode). The high frequency peaks

appearing in the input might be instrument "hash" and have very

little effect on the output, which exceeded 80 G, the critical

mass acceleration deduced from Eiband's work. The subject

did in fact incur a spinal injury during the test.

The digital computer has also been used with the two and

three degree of freedom models, but only for limited input forms.

7.0 Analog Computer Studies

A special purpose analog computer has been developed at

Stanley Aviation to aid in the study of human tolerance to short

duration accelerations. Although this computer was developed

outside the N.A.S.A. research program, a brief description of

the device is necessary, since it was used in the analysis of

some of the experimental data.

The analog computer is capable of solving the equation

governing the motion of a spring-mass system in a continuous

fashion by operating on an applied voltage input that simulates



the applied acceleration.. Using the D.C. operational amplifier

as the basic component, the electronic network can be arranged

to perform multiplication, summation and integration of the

voltages in the circuit. Thus, mathematical operations can be

performed on the voltage that are analogous to the operations

necessary for the solution of the equation of motion of the

mechanical model.

The basic principles of the analog circuit are illustrated

by Fig. 19, where an electronic network is arranged to solve

the equations pertaining to a single degree of freedom model

with damping. Fig. 20 shows an experimental arrangement,

where the input is read directly from a given trace, represented

by a current carrying wire. A magnetic pick-up follows the

trace and generates a voltage proportional to the magnitude of

the acceleration. This voltage is fed into the analog circuit

and the output voltage (equivalent to the mass acceleration) is

presented on a cathode ray tube. The analog can work in real

time or a "scaled time" depending on the time constants of the

net work.

The influence of rise time on the response of the spring-

mass system has been investigated using the analog. These

tests were conducted in the course of a check out on the

accuracy of the computer and should not be regarded as

confirmation of the theory, since the computer only performs

the operations suggested by the theory. In this respect it

is only as good as the theory that governs the dynamic model.

Some computer outputs are shown in Figs. 21 and 22. These

are direct traces of pictures taken of the cathode ray tube

during a test, using a polaroid camera, and show the input

acceleration and the mass acceleration determined by the analog.

The scale used for the output is half that used for the input

so overshoot was attained in each case. Fig. 21(a) illustrates
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the output obtained using a step input and zero damping; the

error involved is about 3%. The results presented in

Fig. 21(b) refer to another Daisy Track experiment (Run No.389).

The input acceleration was applied in the headward direction

and reached over 50 G. The bear subject received spinal

injuries that would be expected from the peak mass response of

over 80 G. Fig. 22(a) shows a typical trace obtained during

the tests when the variation of rise time was investigated.

A ramp input function followed by a constant value was used

and the peak mass accelerations obtained gave good agreement

with the theory, showing that the accuracy of the analog

analysis is quite acceptable. (Fig. 22 (b)).

The main advantage of the analog technique is that the

characteristics of the mechanical system can be varied at

will by adjusting the equivalent parameters in the analog.

Such important parameters as restraint and cushion character-

istics and body postion can be optimized without resorting

to expensive and time-consuming test programs. With this in

view, a more advanced computer, including cushion and restraint

characteristics, is presently being developed by Stanley

Aviation.

8.0 Analysis of Experimental Data

8.1 Availability of Data

One of the disappointing aspects of this program is the

dearth of usable experimental information. Considerable

evidence exists that vehicle accelerations of up to 30 G can

be withstood for duration periods of up to VlOth of a second

in the spinal and transverse directions, but the vital areas

of interest, including the plateau region covering a range of

input values from 30 to 50 G, and the impulse region for input

accelerations exceeding 50 G, have not been adequately explored.
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This is understandable from the nature of the experiments and

the need for using human subjects to get realistic data, and

much of the information that does exist is based on animal test

subjects chosen because some degree of similarity of body

structure exists between the animal and man. Thus, bears,

chimpanzeespand to a lesser extent hogs, have been used.

Another disappointing feature of the experimental program is

the lack of existing methodical documentation of tests that

were carried out some years ago. In many instances, when

information was requested on tests that were apparently of

extreme interest, it was found that comprehensive records of

the tests did not exist, or had been destroyed.

In early experiments, for instance the German work and

tests carried out by the Naval Air Materials Laboratory, many

of the injuries were sustained at relatively low G values

due to inadequate restraint. The experimental programs were

designed to meet the immediate needs that existed at the time,

and there was very little standardization of input acceleration

pattern, restraint system, seat and instrumentation. Thus,

many of the results obtained are limited by the lack of reproduc-

ibility and the absence of strictly controlled conditions, and

the information of interest in an evaluation of the dynamic

model is masked by a variety of factors.

The problem of instrumentation is always present in human

factors experiments and much of the early work presents

conflicting results because of the inability to measure the

relevant parameters with any degree of accuracy. Accel-

erometers are extremely sensitive to their immediate environment

and good mounting and attachment are essential. In many cases,

the instrument can record the peculiar response of the mount

rather than the gross accelerations imposed on the vehicle and,

in some experimental arrangements, resonance vibrations can be

set up in the main structure (sometimes termed ringing) which
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again gives an erroneous response. The response of an

accelerometer of a certain natural frequency is analagous to

that of the spring-mass model, so that overshoot can occur in

a similar manner, depending on the duration and frequency of

the applied acceleration. Rigid mountings are therefore

essential. to obtaining reliable readings. For this reason,

accelerations measured on the human body during tests are

highly suspect and should only be regarded as indicative of

trends rather than the actual acceleration of the part of

the body being investigated.

All the agencies known to be active in the field of

experimental acceleration stress were contacted in an attempt

to obtain as much experimental information as possible. The

bulk of the usable results came from the work of Stapp carried

out at Edwards A.F.B., with a rocket-sled, and that of Beeding

at Holloman A.F.B., using the pneumatically propelled Daisy

Track sled. A summary of the agencies contacted and the

results obtained is given in Table 1. Because of the shortage

of results, the analysis of experimental data was restricted to

those relating to applied accelerations in the spinal headward,

transverse backward, and transverse forward directions. Much

of the experimental information used was taken from the

literature which is referenced in this report, and the data

used that is not readily available is summarized in Appendix L.

8.2 Spinal Headward Data

The logical starting point for the analysis of the headward

acceleration is the data presented by Eiband (Ref. 2). As

discussed in Section 2.2, Eiband's method of presentation of

the results is highly subjective, since no firm cri.teria were

used in assigning G levels and duration times. Eiband's actual

results are plotted in Fig. 2, and again in Fig. 23, where

the notation used indicates the source of the information, the
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run identification number, and the type of analysis used.

Thus, Eiband's original results have the letter E after the

run number (see Table 2). These results were re-analyzed

using exactly the same technique as that used by Eiband,

eliminating some information that was considered unreliable,

e.g. where more than one point on the graph had been deduced

from a single end-point experiment. The analysis was performed

as objectively as possible and the discrepancies between the

results and the original deductions serve to illustrate the

need for a more exact method of analysis of the results.

Eiband's results have been supplemented by the additional

data that was available, and can be identified by the symbol

E.

Considering the plateau region, although the information

is limited, there is some evidence of the tolerance line

lying just above the 40 G input acceleration level, and in

view of the accuracy of the data, 40 G appears to be a reasonable

value. Since this represents half the maximum response of the

model, the allowable peak mass acceleration is taken as 80 G.

The position of the tolerance curve in the impulse region

controls the value of the ratio G (max)/,J for the dynamicP
model. The slope of the line, from single degree of freedom

theory is - 1, and fitting a line to the experimental data

gives a value for. . The value deduced for W is then

278 rad/sec.

A method suggested for standardizing the analysis consists

of comparing the dynamic model output obtained with a

particular test, with that from a standard input. In the

plateau region, an equivalent rectangular input, of duration

At and input acceleration Gc, was deduced. To do this, the

output of the undamped, linear, single degree of freedom model

was obtained using the system characteristics deduced above.

The equivalent rectangular input is then one which gives the

same peak mass acceleration (assuming 100% overshoot) and the
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same velocity change (G A t). The input acceleration and

duration time of the equivalent rectangular input are then

used as the parameters for plotting on the tolerance curve.

In the impulse region, full overshoot is not attained and

another criterion is necessary. The rise time is very short

and the input was considered rectangular. Using the peak

input acceleration from the experiment an equivalent rect-

angular input was constructed where the dynamic response was

the same as that obtained from the experimental acceleration

time history. The duration of the equivalent rectangular

pulse was then taken as N t for plotting purposes. Inconsist-

encies due to the finite rise time can be removed by comparing

the experimental velocity change with that obtained from the

equivalent rectangular input, and adjusting the value of GC

used until agreement is obtained between the two velocity

changes. The results obtained from this analysis are plotted

in Fig. 23 and denoted by the letter S. Fig. 24 illustrates

the definitions used.

The general effect of this procedure is to move the

experimental points to the right, imiplying that the effective

input acceleration was of lower magnitude but lasted for a

longer time than assumed in the original plot. Only one point

($50S) remains in the impulse region - meager evidence for

fixing the position of the tolerance line. This run concerned

a hog experiment that showed a severe end point and a two inch

layer of styrafoam restraint was used that did not bottom out

during the run. So even this point cannot be regarded as

reliable. The procedure for finally fixing the position of the

impulse tolerance line should now proceed by an iterative

process - obtaining the new frequency and evaluating the

equivalent rectangular input and so on - until agreement is

obtained between the calculated and assumed frequency. However,

in view of the unreliability of the experimental point,
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this procedure was not adopted and evidence from another

source was sought.

Simple drop tests, if properly controlled, can provide

extremely valuable results in the impulse region, also

accident data such as those reported in Ref. 29 can be

consulted, but the latter rely on deduced information and

the degree of injury usually greatly exceeds the tolerance

level used here. Accident data are also difficult to analyze

from the point of view of applied force direction. Experiments

conducted by Swearingen and reported in Ref. 22 appear to give

the most reliable impact region results. The safe limit

suggested from a large number of drop tests carried out with

human subjects, seated on rigid seats, corresponds to an

impulsive velocity change of 11.35 ft. per sec. From

Equation D.23 of Appendix D, this velocity change is given by

G (max) = W AV , which gives a value of the frequency of theP
equivalent spinal spring of W4 = 226 rad/sec. Human drop

tests carried out at Stanley Aviation have indicated that

velocity changes up to 10 ft/sec. can easily be tolerated,

whereas Stapp (Ref. 18) has claimed a velocity change of

17.25 ft/sec. had no serious effects on a hog subject (Run 49)

but full-information on this test is not available.

If the lower value of spinal frequency (226 rad/sec.)

is accepted, the influence on the model output for impulsive

inputs can be visualized, since the maximum accelerations

produced for two different frequencies is in the ratio of those

frequencies for a given.duration time. A lower frequency

value implies less overshoot and higher tolerable input

accelerations. In the plateau region, a reduction in

frequency means a raising of the tolerable input level due to

the increase in overshoot when studying the experimental results

which have a finite rise time.
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The tolerance line for durations greater than those

contained in the plateau region has been sketched in as

shown on Fig. 23. The slope has been taken as - 1, since

the two degree of freedom model has indicated that this is

the right order and might even be greater, depending on the

relevant mass ratio (see Section 4. 5 ).

8.3 Transverse Backward Data

When the direction of the accelerating force is at right

angles to the body and towards the rear of the body it is

termed backward. This type of acceleration is encountered

during deceleration when the occupant of the vehicle is in

the forward facing position. It was found that more informa-

tion existed on this direction than any other, but evidence

was again sparse in the impulsive region. Fig. 25 summarizes

the available, usable data on a plot presenting vehicle

acceleration against duration time.

The original Eiband tolerance curve did not show a plateau

because of the lack of data, but a reasonable value for the

maximum input acceleration in this region appeared to be 40 G.

Using this value, the information contained in point D.E and

the expected slop of - 1, gives a value of 33 rad/sec. for the

equivalent system frequency. However, using the point S26E,

the frequency obtained is 134 rad/sec. Point D.E is based on

accident (fall) evidence and should be well within the end

point region, whereas S26E was obtained from Stapp's hog

experiments where the acceleration values were taken from

an instrument mounted on the seat bottom. The acceleration

obtained does not agree with the measured velocity change,

which appears to be fairly reliable, and is probably an over

estimate. Thus, from a first evaluation of Eiband's results,

it was decided to use W = 134 rad/sec. in obtaining the

equivalent rectangular input. Kornhauser (Ref. 30) has
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suggested a critical velocity change of 80 ft/sec. and

assuming a G p(max) of 80 gives a frequency of 32 rad/sec. This

line is shown in Fig. 25 and coincides with that based on

accident data, which is not surprising. However, the

Kornhauser figure is based on survival data, which involves

a more severe tolerance criterion than that used here.

As further data became available and was analyzed by

the Eiband method (points E), it was apparent that this method

of analysis indicated a lowering of the tolerance level in

the plateau region (approx. 35 G). One particular end point

experiment from the Holloman data (H675E%) did not appear

to fit into the general pattern and indicated a very low

tolerance level. However, the subject used in this test

had an abnormally long torso and a very tight shoulder strap

arrangement had to be used. This pre-stressing of the spine

in a direction at right angles to the acceleration appears to

have lowered the tolerance limit, and this test should be

discounted.

When the equivalent rectangular input analysis was

applied to the data in an attempt to standardize the criterion

and take account of the rise time effects, most of the points

in the plateau region were moved to the right into the long

duration regime as shown in Fig. 25. This meant that a new

plateau tolerance level had to be determined, and this was

deduced to be about 45 G. The impact points were also moved

to the right and the points of S26S and S27S controlled the

position of the tolerance line in the impulsive region.

(Note S26S was calculated from acceleration data measured by

the accelerometer placed on top of the seat, which correlates

with the velocity change and corresponds to the lower point

S26E" in Fig. 25). The most reasonable value for W was

found to be approximately 95 rad/sec. Continuing the iterative

process was considered to be unnecessary as the position change
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introduced is not greater than the accuracy of the original

experiments. The impact velocity change corresponding to

S= 95 rad/sec. is 30.5 ft/sec. A tentative tolerance curve

is shown by the full line in Fig. 25.

The tolerance lines of Fig. 25 are presented, in the manner

used by Kornhauser (Ref. 30), in Fig. 27. The lines represent-

ing duration times in Ref. 30 were found to be in error and

have been recalculated for use here. Good agreement between

the two sets of results is evident, except in the impulse

region (0 - 0.02 sec.) where Kornhauser accepted a greater

permissible velocity change than that used in this report.

8.4 Transverse Forward Data

The available data from experiments performed with the

acceleration vector in the transverse forward (or sternumward)

direction is given in Fig. 26. Very little evidence exists,

none of which is deemed as particularly reliable. Some tests

at Holloman A.F.B. have been conducted with the subject in the

rearward facing position (acceleration forward) but as

comparatively low G values. Experiment H.335 is of particular

interest since it represents a definite end point and even on

the equivalent rectangular input analysis the point appears to

indicate a much lower tolerance level than for other input

directions. Other tests under similar conditions (e.g. Run 332,

peak G's 37.5 and Run 337, peak G's 39.0) indicate near end

point conditions, but unfortunately the acceleration traces for

these runs are not available. An explanation for this low

tolerance level might lie in the fact that the subjects were

inclined at 100 to the direction of the acceleration, giving

an upward component that might have a strong influence on the

body organs. In experiment S39S, the subject (a chimpanzee)

received no injuries but obviously suffered pain and hydraulic

effects would be difficult to determine.
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If it is assumed that the frequency involved is the same

as that for the backward direction, the impulse region can be

defined by the lines shown in Fig. 26, the position depending

on the value of G (max) used. The equivalent input analysisP
(using Un = 134 rad/sec.) was applied to the data and the end

point experiment S38S was found to lie beyond all the tolerance

lines and so does not help much in the final choice of line.

If experiment H.335 can be ignored as a statistical fluctuation

it appears likely that the tolerance limits are similar to

those for the backward direction, but enough evidence does not

exist to draw even tentative conclusions.

The Stanley "static"drop tests (Appendix L) in which the

force was in the forward direction, showed that velocity

changes of up to 28 ft/sec. did not produce any signs of an

end point, which indicates equivalent spring frequencies of

w = 80.5 (G max = 70), w 92 (G max = 80) andP P
W = 103.5 (G max 90) radians per second. Since noP
injuries were incurred, the allowable velocity change might be

higher, which would reduce the frequencies quoted above. Due

to the attenuation system extending the pulse duration in these

tests, and the inaccuracies of the recording instruments, some

difficulty is encountered in positioning them on the tolerance

curve, but they appear to be on the border of the impulse and

plateau regions and cannot be considered as concrete evidence.

8.5 Multi-Directional Accelerations

Although the study of the influence of multi-directional

accelerations on the human body is not part of the program

described here, a brief description of the experimental results

obtained at Stanley Aviation is of interest.
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A large number of drop tests were carried out in support

of the B-58 escape capsule development program. These

included capsule drops from moving trucks and experiments

performed with a monorail facility that enabled a known

vertical and horizontal velocity to be imparted to the capsule.

A yielding metal attenuator was used to minimize the impact

forces experienced by the occupant, and accelerometers were

mounted on the seat to record acceleration inputs in the

three major directions. The tests which are of particular

interest in assessing tolerance levels are listed in

Appendix L.

Because of the nature of the tests, the capsule occupant

experienced high accelerations in the transverse, spinal and

lateral directions. When each direction is considered

separately the results obtained are shown in Figs. 23, 25 and

26, but this analysis is not considered valid in view of the

multi-directional nature of the applied accelerations, and

the points are included for their interest value only and

have not been used in determining the tolerance lines. The

effects of multi-directional inputs on human tolerance are of

extreme importance, since these inputs are often encountered

in practice. A research program is presently underway to

determine tolerance criteria for this type of input based on

the magnitude and direction of the resultant acceleration

experienced by the capsule. The results of this study will

be published at the completion of the program under Ref. 31.

9.0 Tentative Tolerance Criteria

Because of the sparse evidence available, it is impossible

to give firm recommendations for the values of the coefficients

to be used with the dynamic model. The equivalent rectangular

input concept has been introduced in an attempt to standardize

the presentation of experimental tolerance data and to take
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account of the effects of different rise times encountered

in the tests. This method of analysis is not ideal and

can be criticized on various counts, but it represents an

improvement on existing methods. The application of this

analysis has transferred many of the experimental points to

the longer duration region1 resul.ting in less evidence in the

important impulse and plateau regimes.

The analysis of spinal headward accelerations has shown

that the maximum plateau input acceleration can be taken as

40 G with some degree of confidence. The selection of an

equivalent spinal frequency is not so well defined and

because of the shortage of resul]ts in the impulse region,

the most reliable evidence can be taken from the critical

velocity change deduced from Swearingten's drop tests which

gives a value for W of 225 rad/sec.

Most of the data analyzed concerned the transverse

backward direction, although most of the experiments concerned

relatively long durations. The plateau tolerance line falls

at a value of 45 G for the input acceleration and the most

sensible position for the impulse tolerance line corresponds to

a frequency of 95 rad/sec., which is somewhat higher than the

value suggested by the evidence from accident survival. The

adoption of the more pessimistic tolerance line appears

justified since it satisfies the few sled test points available

and accident cases usually represent extreme end points.

No satisfactory conclusions could be made from the transverse

forward data, but a frequency of 95 rad/sec., as for the back-

ward case, i; suggested. From a physiological stand point

the plateau tolerance level might be lower than that for the

hIvcl-,,,ard direction hecauseo of the position of theý spine relative

to the inierriil organ.s. There i.-; ,;,me experimental evidence

to .,;upport this f'ect and uintil more rel -vant test;s have been
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conducted, it is suggested that the allowable peak input

acceleration is taken as 35 G.

Tentative values suggested for use with the single

degree of freedom, undamped dynamic model are, therefore,

as follows:

Headward Direction

frequency 225 rad/sec.

maximum allowable mass acceleration 80 G

Backward Direction

frequency 95 rad/sec.

maximum allowable mass acceleration 90 G

Forward Direction

frequency 95 rad/sec.

maximum allowable mass acceleration 70 G

The impulse or impact regions based on these criteria

represent duration times from zero up to 0.009 sec. (headward),

and 0.02 sec. (backward and forward). The end of the plateau

region corresponds to duration times of 0.09 sec. (headward),

0.06 sec. (backward), and approximately 0.08 sec. (forward).

It should be remembered that these values are applicable

to the undamped model. Damping will introduce changes in

the tolerance levels as explained earlier, but these are

considered to be small enough to be ignored at this stage,

in view of the accuracy of the available experimental data.

Also, if the Eiband type analysis is being used, the tolerance

areas defined by the points E/ in Figures 23, 25, and 26 are

applicable.
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10.0 The Need for Further Work

Research requirements in the field of human tolerance to

short duration accelerations are considerable and only

suggestions arising from the particular aspect described in

this report will be mentioned here. The following broad

suggestions are made:

1. Experimental work should be planned with the complete

acceleration-time spectrum in mind to insure adequate

coverage of impulse, plateau and hydraulic regimes.

2. More attention should be paid to experimental detail of

individual experiments from the point of view of planning

input acceleration programs that are more amenable to

simple analysis and to the measurement of relevant

experimental quantities and cross checking results by

alternate instrumentation.

3. Where possible, more than one test to be carried out under

a given set of conditions - giving reproducibility of

results.

4. Standard objective, medical examination procedures should

be devised to estimate degree of tolerance in experimental

work.

5. More cooperation between experimentalists, theoreticians

and persons with applied experience in the field, in the plan-

ning of experiments.

6. The theoretical and practical investigation of the influence

of restraint systems on human dynamic response should be a

matter of priority and the optimization and standardization

of restraint systems used in tests should be agreed to.
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7. More experimental data in the impulse region is essential -

this could be achieved by simple, controlled drop tests

which are reasonably inexpensive and give reliable results.

8. Human tolerance levels applicable to multi-directional

acceleration inputs should be investigated using theoretical

and experimental techniques.

9. Analytical studies should continue with the aim of

producing more comprehensive models and more reliable

values for the appropriate coefficients.

10. Experimental methods for the direct measurement of

physical and mechanical characteristics of the body under

dynamic conditions should be extended, and the correlation

of human and animal response should be investigated to

ensure the correct interpretation of experimental results

using animal subjects.

It is only fair to point out that some of these suggestions

are already being complied with in the acceleration stress

field, and what is hoped for here is, a more universal acceptance

of an agreed policy in attacking the many problems that still

exist.

11.0 Conclusions

The research program reported here has developed a single

degree of freedom dynamic model, consisting of a spring-mass

analog of the human body, that can be used to predict human

tolerance to abrupt accelerations. Variations of the basic

model can be used to predict the quantitative effects of

restraint systems and seat cushions, but more work is required

in this field. Two and three degree of freedom models can be

used for a better representation of the human body, but the
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full significance of this approach will depend on further

research. There is still a lack of reliable experimental

data, but coefficients that can be used with the undamped

single degree of freedom model have been suggested for the

headward, forward, and backward acceleration directions.

The analytical solutions developed for simple input

forms can be used in limited applications and for quantitative

studies, but digital or analog computers are required for the

analysis of complex acceleration inputs.

The analytical approach to the problem of acceleration

stress and consideration of the dynamic response of the human

body when subjected to short duration accelerations can make

significant contributions towards a solution of the many

problems involved. It is emphasized that cooperation amongst

the persons engaged in the study of various aspect of accelera-

tion phenomena will provide the surest means of obtaining a

complete understanding of the overall problem.
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Table 2. NOTATION USED IN EXPERIMENTAL ANALYSIS *

Symbol Subject Initial Reference Number Final Type of
Letters Letter Analysis

O Bear H Holloman E Original
A.F.B. Eiband

Analysis
S Ref. 18

0 Chimpanzee
SA Ref. 19 Refers E Eiband Type

to Analysis by
G Ref. 6 Test Stanley

SHuman Number Aviation
D Ref. 29

S Equivalent
Rectangular

ST Stanley Input
Hog Aviation Analysis

Full Shading e.g. A - end point

Half Shading e.g. & - near end point

No Shading e.g. 6A - no injury

" Except Figures 2 and 3, where Eiband's original nomenclature has

been used.
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"(mass acceleration
or output acceleration)

m1
k (spring stiffness) k(K=damping

J c (input acceleration)

(a) single degree of (b) single degree of
freedom model freedom model with

damping

Y2 . 3 YZ

ml ml

i21K, ki 2K1

(C) two degree of (d) three degree of
freedom model freedom model

input

Fig. 5. Dynamic Models of a Human Subjected to Acceleration
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(a) Low frequency modes

, ,/ /, 10 cps mode/I/' (Method 1)

.0 Ref. 16

• 10
H -three curves

5 cps mode coincidentS~(Method 1)

10 cps mode
HA B(Method 2)
0 B

4.)

20 40 60 80 100 120

input frequency(rad/sec.)

15% critical damping in spinal mode a
30% critical damping in 10 cps visceral mode all curves
35% critical damping in 5 CPS
30% critical d
25% critical visceral mode

10 I

0• Ref. 16

, d 
A

VI
H

o
H/
,0/

4-)

20 4o 60 80 100 120
input frequency (rad/sec.)(b) High frequency mode

Fig. 17. Tolerance to Sinuoioi;n]l Input Accelerations: Comparison of

Three Degree of Freedom System Results with Experiment
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Test Data

Source: Holloman A.F.B.
Run No: 390
Subject: Bear
Direction: Headward
Frequency: 278 rad/sec.
Injury: Spinal fracture
Analysis: IBM 1620

8 max allowable
80" mass acceleration

input
and 6o output
output
accelera-
tion
(G)

4c,
input

20

0
0 .01 .02 .04 .05

time (sec.)

Fig. 18. Typical Digital Computer Analysis
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APPENDIX A

NOTE ON MATHEMATICAL METHODS AND ANALYTICAL TECHNIQUES

SYMBOLS

h arbitrary function of time

L denotes "the Laplace transform of"

L"- denotes "the inverse Laplace transform of"

p the independent variable in the transformed
equation

t time

function of p such that Lh(t) = (p)

value of Sat t = 0

value of Sat t = 0

Yc input acceleration

. e." deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

frequency of oscillation of the motion of
thu spring and mass

A.1



The object of the mathematical analysis of the dynamic response

of a model represented by a spring-mass system when an acceleration

input is applied to the system is to determine the motion with

respect to time of a particular mass within the system, which is

influenced by the input acceleration and the subsequent vibration

of the springs themselves.

The first step is to evaluate the the forces developed in the

system in terms of the characteristics of the system (spring stiffness,

damping etc.) and to determine the algebraic sum of the forces acting

on that part of the system which is of interest. If the part of the

system under consideration is at rest, a condition of equilibrium

exists where the sum of the forces is zero. If some resultant

force acts on any mass however, motion results that can be described

by Newton's second law of motion which gives

force = mass x acceleration

The forces acting are usually determined in terms of the spring

deflection or the spring velocity (rate of change of deflection), so

an equation involving one or both of these quantities results. If

the deflection is & , the spring velocity is A (9) which is

written S and the spring acceleration (rate of change of spring

velocity) is Yd• or 8. The input acceleration, usually

denoted is assumed known, and this is related to the spring

acceleration and the resultant mass acceleration, so that the input

can be introduced into the equation. Thus, for the single spring-mass

system with no damping present, discussed in Appendix B, the equation

governing the motion of the mass turns out to be

ol+~

where W is the frequency of the system.

This equation is referred to as the equation of motion of the system

and it contains the ingredients necessary for evaluating the way that

the mass moves with time. Written out fully, the above equation is
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The equation of motion has to be solved to give the spring

deflection at any time, which can in turn be related to the resultant

mass acceleration. The equation of motion can be solved to give an

analytical or closed form solution only for certain simple accelera-

tion input forms, e.g. step function, ramp, impulsive inputs, but

these cases are of considerable interest. When more complicated

inputs have to be analyzed, the equation of motion must be solved

either numerically in a step-by-step fashion, usually with the aid

of a digital computer, or with the aid of an analog computer.

The method of analytical solution adopted in this report uses

the Laplace transform or operational calculus technique, which is

readily applicable to linear differential equations with constant

coefficients. This method has the advantage that it is direct and

does not need the evaluation of complex arbitrary constants. This

convenient method of solving differential equations is easy to use as

it is subject to strict rules. Mathematically a function, say )

is transformed into another function X (I) by the operation

co

0

This is usually written

Yx ) =L A)

where L stands for "the Laplace transform of."

All functions appearing in the differential equation are transformed

by the procedure specified above. The value of X(t) for a variety

of functions At) are tabulated in standard texts so no integration

labor is actually involved. In all cases an inverse transform

exists denoted by

Li' xJr)
The procedure for solving a differential equation is to arrange the

terms in such a way that known transforms exist, and after consulting

the transforms and applicable theorems, to solve for the new variable.

The inverse Laplace transform is then consulted, which gives the
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solution in terms of the original variable directly. Thus the

solution of differential equations is reduced to a matter of

consulting particular transformations in a table of transforms.

As an example, take the equation cited above and let

x(fs) = L Q-0

Then, consulting the tables of transforms

L zt I
where Xo and C, are the values of S and ( at t = 0, also

The transformed equation of motion, for the simple case where

8 •0 at t = 0, is

so that

2+

The inverse Laplace transform of the right hand side is C' we)

hence

It should be noted that in some texts the Laplace transform is

defined by 00

= f e

0

which results in a different set of transforms but, of course, gives

the same answer. The first definition is used throughout this

report. Further information on Laplace transforms can be obtained

by consulting the references given at the end of this appendix.
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Having deduced the spring deflection, 6 , from the equation of

motion, it is usually required to investigate the conditions under

which the deflection or related resultant mass acceleration attains

a maximum value. This is done, where possible, by the standard

procedure of examining 'L/• = 0 which gives the time at which

turning points exist, and the conditions for L26/t to be

negative indicates when & is a maximum. In this way the peak

deflection or peak mass acceleration can be determined and used as a

criterion for determining human tolerance to acceleration, as

described in the main text.
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APPENDIX B

GENERAL THEORY OF A LINEAR, UNDAMPED,
SINGLE DEGREE OF FREEDOM MODEL

SYMBOLS

F spring force

k spring stiffness

I unloaded spring length

L Laplace transform

m mass
p

t time

t, duration time of particular input
accele ration

y , y , y coordinate, velocity, acceleration of
p p p mass m relative to fixed datum

p

Yc' ic Yc coordinate, velocity,
spring base relative to fixed datum

d, 13 K constants appearing in input functions

"" deflection, velocity (rate of change of
,'" deflection), acceleration (rate of change

of velocity) of spring

S initial (static) spring deflection

spring frequency

B.1



General Theory of a Linear, Undamped, Single Degree of Freedom Model

In this Appendix, the dynamic model in its simplest form

(Figure B.l) will be treated; that is, a single degree of freedom

spring-mass system with a linear response and no damping effects.

The mathematics governing this basic model is fundamental to an

understanding of the various modified dynamic models and should serve

as a good introduction to the subject.

y (mass or output
" acceleration) spring in motion

and compression
m

(mass) (frequency) linear
response

F 'displace-
(force) (unloaded Lment

7lengt ) f from
low -Ldturn)

S(deflection)

'ic (input
acceleration)

(a) (b) (c)
Figure B.1

A spring that has a linear response is one that has equal

increments of deflection for equal increments of force, and a plot of

force against deflection produces a straight-line. The force (F)

is related to the deflection (S) by the expression

F -kG B.1
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This force, developed in a spring, produces an acceleration of
the mass, relative to the datum, and can be expressed by Newton's

second law of motion (Force - mass x acceleration), as follows:

F = k B.2

When a given acceleration (or force) is applied to the base of

the spring, a force is developed in the spring in accordance with

Equation B.1, which produces the mass acceleration given in B.2.

It is desired to express B.2 in terms of the input, which is the

known quantity in the problem, and the argument proceeds as follows:

The deflection in the spring is equal to the unloaded length (I),

minus the loaded length (yp-Yc). Adopting the coordinate system

shown in Figure B.1 (c), this leads to

The spring velocity (which can be interpreted as the rate of

change of deflection, i.e. the velocity of the mass relative to the

point of application) and acceleration (which is the rate of change

of the spring velocity) are obtained by differentiating B.3 with

respect to time, once and twice, respectively. Thus

and BA

Substituting this value for y" in B.2, givesYp

ks=

or

rr~p

The natural frequency of the spring-mass system is related to the

apring stiffness by the expression

eo the above equation can be written

This is the equation of motion of the system, and relates the

input acceleration to the spring frequency, the deflection and the

acceleration produced in the spring. Equation B.5 is a differential

B.3



equation of standard form that can be solved for simple inputs to

give a solution representing the deflection (8) at any time. The

deflection can be used to obtain the spring acceleration (S ) that

can then be related to the mass acceleration (" ), by B.4. The
yp

mass acceleration will be used to denote the acceleration of the mass

relative to the fixed datum line and is the resultant of the applied

input acceleration and the spring acceleration due to the spring

deflecting.

Solution for a Step Input

For the initial analysis, a step input will be assumed, i.e.,

one which rises instantaneously to a given value and remains at that

value for some time, which is considerably greater than the period

of, the system. The input function will be denoted as follows:

and B.5, when written out fully, becomes

-tL B.6

The Laplace transform method of operational calculus will be

used to solve this equation, although any standard technique can be

employed. The Laplace transform method reduces the solution of a

differential equation to a matter of looking up a particular

transformation in a table of transforms. Reference to standard

texts (e.g. Refs. B.l, B.2, B.3, B.4) will clarify the procedure.

If L denotes "the Laplace transform of," then

In terms of X , B.6 becomes

for the initial conditions 0 j O, and & = 0 at t = 0.

Hence,

oK
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The inverse Laplacian transform gives

S B.7

This is the solution of the equation of motion, and gives the value

of the Aeflection at any time t for a step acceleration input of value o.

Differentiating wits respect to time gives the spring velocity (rate

of change of spring deflection)

W B.8

and a second differentiation gives the spring acceleration

S o( -r B.9

Thus, from B.4, the expression for the mass acceleration becomes

= (o H-C4 WE), B.10

The output given by B.1O is sinusoidal in nature and has the form

shown in Figure B.2
Accelerations 'Aeatio 1. Step Input 4. Linear Ramp Output

p c 2. Step Output 5. Parabolic Input 5
3. Linear Ramp Input 6. Parabolic Output 6

"a Z - /
2

4

4? W 5

O- a n 2i time, t
2 Figure B.2 2&*

If there is some initial deflection in the spring given by 64 , the

Laplacian equation takes the form

r LA-) A.



where X0,= &the value of 6 at t = 0. Then,

V + 'V-1 X

The inverse Laplacian transform of this expression gives

and

so that, in this case, the mass acceleration can be represented by

PB.11

Solution for a Linear Ramp Input

A linear ramp input is one that has a constant slope, i.e., its

value rises, linearly with time and may be represented by ' -/V 9

where/% is the slope.

Slope /3

YC

(input
acceleration).

7c /3 t

t (time)

Figure B.3

The equation of motion can be written

The Laplace transform of this equation for 0 0, 9 = 0 at t - 0 gives

'I,

B.6



and

The inverse Laplacian transform gives

which represents the deflection at any time t < t,, and the accelera-

tion obtained by double differentiation is

L3 /.SL4AL Wt

giving the mass acceleration by the expression

W B.13

The output corresponding to this expression is also plotted in

Figure B.2.

If the input can be represented by a ramp function until time

t1, and then assumes some other form, the mass acceleration may be

represented by B.13 until t . t,, thereafter the equation of motion

must be solved using the conditions existing at t = t as the new

starting conditions.

Solution for a Parabolic Input

In this case, the input has the shape shown in Figure B.4,

and can be represented by the equation (c =

(input ycacceleration) 2Yc = t (time

St (time)

Figure B.4

The equation of motion is now

B.14
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The Laplace transform for 0 = 0, 0 = Oat t = 0 is

+

so that

The inverse Laplacian transform results in

and the acceleration is given by

and the mass acceleration from B.4, can be written

The mass acceleration given by this expression is illustrated in

Figure B.2.

Peak Accelerations

In applying tolerance criteria to the model, the quantity of

main interest is the value of the maximum acceleration (or output)

achieved by the mass. When a maximum occurs in the output due to the

mass acceleration overshooting, it can be found analytically. The

usual procedure is to differentiate with respect to time the equation

representing the mass acceleration at any time, and equating to zero.

For the step input from B.10,

A t = 0(W t

A t
The solution of this equation gives any turning point which might

represent a maximum, minimum, or a point of inflection. In the

above equation, Mo is finite, and sinwt must be zero, which occurs
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when OW = 0," , Z 1 etc. A second differentiation gives the

condition for maximum or minimum.

CLE

When Lot: , 3il etc., the second differential is negative, indicating

a maximum. Thus, the mass acceleration is a maximum for a step

function input, when

and has the value

6n~ -X C( IB.16

Thus, if there is no damping present, the peak mass acceleration

can be twice the input acceleration. This is the case of 100%

overshoot.

The linear ramp and parabolic inputs show no maxima or minima, only

points of inflection. These facts can be seen by consulting

Figure B.2.

Square Wave Input

The square wave input case is of particular interest, since,

in practice, the input is applied for a short finite time (t,) only.

The mass continues to move after the removal of the applied

acceleration, so that the maximum acceleration experienced by the mass

is usually obtained at some time greater than t, . Equations B.6

through B.10 hold up to time t,, but thereafter, since the input is

removed, the equation of motion reduces to

c•t 2  B.17

In this case, the initial conditions to be applied are those pertaining

to t = . The Laplace transform of B.17 is
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where

6 t X 0 W f r o m B .7

and

to from B.8

Bence, 3

The inverse Laplace transform of this expression gives

~Ih)XI

whe re tan 0

Substituting the values for 3C, and 3C , leads to

S
Wat AA42 'i1i (W- +t'~ A4Ai

LAP.

and since sin ,)k. C41. 3.•=l, =

From B.2,

so the mass acceleration for time greater than t, is given by

B. 184e =c(Z - 2, c*-w W (A+1J

where time is now measured from t a tI

B.18 is examined for maxi-a by differentiating with respect to time

and equating to zero, i.s.,

C. O

B.10



Turniung points occur at (WE~ + 46) =/2AA

NovC LP +B

and this expression is negative when ('42) 4 I '/ so

that maxima occur at these values. The peak mass acceleration is

given by

Thus, for a given amplitude, the maximum output attained depends on

the pulse duration and frequency, as shown in Figure B.5,.

rectangular input

input I
to 2.0 -

output
ratio

Y (max) j max. occurs
: 2 a.o o c u r b e f o r e t ,i

Figure B.5

B.11
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APPENDIX C

THEORY OF A NON-LINEAR, UNDAMPED, SINGLE DEGREE OF FREEDOM SYSTEM,
SUBJECTED TO A STEP INPUT

SYMBOLS

F spring force

g acceleration due to gravity

k spring stiffness

X unloaded spring length

m mass
p

q *

CLe:

t time

to time at which 6 = 0

tj time at which 6 = 0

y p, yp coordinate, acceleration of mass m
relative to fixed datum

YC' Yc coordinate, acceleration of spring base
relative to fixed datum

ye• initial acceleration at t a 0

o(. step function input acceleration
* •deflection, velocity (rate of change of

', S deflection), acceleration (rate of change

of velocity) of spring

8s initial (static) spring deflection

spring frequency n= l)

C.1



The basic model to be studied is shown in Figure C.l(a).

spring in
motion and
compression

y (mass or
M Poutput inputSp - accelera-

(mass) tion)

(input. unloaded

A)"eq T cO0 length(freq- (input Y ... •

uency) accelera-
tion) -m~~

Yc (input t displace-
acceleration) ment from

(a) (b) (c) datum

Fig•ure C.1

The approach used is similar to that given in Appendix B, except that

the force-deflection characteristics of the spring are assumed to be

non-linear. Thus, the force developed in the spring during

compression or extension must be represented by a relationship of

the form.

F C.1

where denotes some power of 6 and k is the corresponding value

of spring stiffness.

The influence on the F versus S curve of various values of n is shown

in Figure C.2.

n=2

F

(force)

S(deflection)
Fkre C.2

C.2



Although this forumula. does not give a completely general

representation of the system shown in Figure C.l. it enables a

reasonable approximation to be made by selecting an appropriate

value of the exponent n. This assumption allows us to prove a

number of valuable theorems without complicating the mathematics

too much.

Generally, from Newton's second lawg the force developed in

the spring causes an acceleration in the mass which is given by

C*2

Hence,

and since ;;p can be written in terms of the frequency

viz. k" - ý,,(say), the deflection is given byrn

C-3

The equition of motion of the system can now be written down

for a given input since the resultant force on the mass is that

developed in the spring, less the normal gravity force (its weight

for the vertical direction). This force causes a mass acceleration

so that

MP c.4

The deflection G is the distance through which the spring deflects

when loaded, and is the unloaded spring length minus the loaded

length. Using the coordinate system shown in-Figure C.1(.c)

Taking the second derivative with respect to time, the spring

acceleration due to the deflecting of the spring is given by

C-3



which is the difference between the applied acceleration and the

actual resultant acceleration experienced by the mass relative to

the origin of the system (datum), and

S C.5

Substituting C.5 in C.4, the equation of motion in terms of the

input acceleration is obtained

or

09 c.6

where = f is a function of time.

Effect of Constant Acceleration Ye =

If the input acceleration rises instantaneously to a value oC

and then remains constant (i.e., a step function), an expression

for the maximum value of the resultant mass acceleration (') can

be derived. For convenience, the following substitution is made

so that the equation of motion (C.6) becomes

and transposing terms and integrating, the following expression is

obtained

a -- C OL& C-7

The limits of the integration are as indicated, because at time

t = 0 the velocity ( = q) is zero when the deflection is SS (the

static deflection, due to some steady state force, usually the weight

of the mass), and when the deflection is a maximum ( S, ), the

velocity is again zero.

c.4



The left-hand side integrates to $2/1 , which is the kinetic

energy per unit mass, and for the limits given is zero, indicating

that all the kinetic energy of the system appears as potential

energy stored in the spring at maximum deflection. This is simply

a statement of the conservation of energy (kinetic energy plus

potential energy = 0). At maximum deflection, ý is zero so that

all the kinetic energy is converted to potential energy. These

physical facts, described mathematically above, are illustrated

graphically in Figure C.3.

•0 to

dOtt

Figure Co3

The change in the sign of the i curve at t, is due to the fact

that the acceleration reverses its direction at that time. The

two equal shaded areas show that the kinetic energy gained by the

mass is gradually destroyed and stored as potential energy in the

system.

Integrating the right-hand side of C.7 and equating to zero,

gives

h+C.8

The initial acceleration Js from C-3, can be represented by

C.5



so that C.8 becomes

ý'm -) JdJ- C.9
h +

If the initial deflection was zero, = 0 and = 0 and the weight

is ignored, so the above equation reduces to

1%

Remembering that = I = ma[c) , from C.2 the following simple

expression for the maximum resultant mass acceleration is obtained.

cK C.10

which, for a linear spring (01 = i), gives ') = 2s* in agreement

with B.16.

General Solution for n = 1

If it is assumed that n = 1, equation C.9 can be written

el )' . -. 0 s

Adding (o( +0 )to each side and factorising gives

Thence,

Now when n = 1 S1 o = therefore

C.11

For ze-ro static deflection, C.11 agrees with C.10 for the case n = 1.

Equation C.11 shows that if ýs is negative, as might occur in a

negative "G" field, we have the worst physiological effects.

c.6



APPENDIX D

THE SINGLE DEQ=E OF FBEEDOM SYSTEM
SUBJECTED TO AN IMPULSIVE INPUT

SYMBOLS

7 spring force

kC spring stiffness

X unloaLded spring length

L Laplace transform.

op mass of system

t time

tj duaration time of particular input
acceleration

Atc critical duration time for impulsive
inputs

7, I o coordinate, velocity, acceleration of
p P maws m p relative to a fixed datum

y@ ot ic9 c codntgvblocityj acceleration ot

P & deflection, velocity (rate of change of
deflection), acceleration (rate of cheapg
of velocity) of spring

~ (=~.V) referred to-as the "frequency squared" of
the system

Wh referred to as the "frequency" of the system

frequency of system &L%0

V velocity

the velocity change, due to an impulse

Dx.1



In this Appendix it is intended to develop further the analysis

of the response of the simple single degree of freedom system.
Short-time duration accelerations will be considered, which, in the

limit, reduce to impulsively applied accelerations. The model

shown diagrammatically in Figure D.1 (a) will be studied

"y (mass or spring in
output accelera- motion and

(mass) m to)impulsive opasn

type input/

(frequency) 'c ip

(input
accelera-

tion)y C
(input i 1
acceleration) t(time) displacement

(a) (b) (c) from datum

Figure D.1

The equations of motion of the non-linear system have been

established in Appendix C. The equation of motion with no initial

loading, from C.6, is
0 h

=. D.1

and with an initial load M p's

M D.2

Defining V C • +t• , the equation can be condensed to D.3

the form of D.1

D.A

Rearranging terms and dividing throughout by mp, yields the equation

of motion in a more usable form
* . h

4 ýmsD.5

where a - and WK) is the "frequency" of the system.

D.2



Before proceeding, it is worthwhile discussing the spring force

given by C.2 F D.6

If n is even, the force F does not change direction with change of

sign of 6 (that is, in changing from compression to extension). If

our conclusions are limited to a compressed spring only, however, even

values of n can be allowed. If n is odd, F changes sign with S and

no difficulty arises, since the force F is always directed towards the

point of equilibrium.

In general, it is not possible to solve explicitly the

differential equation given in D.5, but the energy equation can be derived

from which several useful results may be obtained. From D.5

+o Cn

Now multiplying through by S , the above equation becomes

which integrates with respect to time to give the energy equation

D.7

for a constant * K is an arbitrary constant of integration (since

the integration was not carried out between definite limits) which

may be evaluated from the initial conditions.

Attention will now be confined to a motion started from rest by

a constant acceleration • , applied from time t = 0 to time t = ti,

and solutions are required of the equation of motion or energy

equation for times less, and greater than t,.

If 0 4 t 4 t, the energy equation is

SD,8

and the initial conditions, expressed in mathematical form, are that
at t = 0, 6 = t = 0. On substituting these conditions in equation

D.', it follows that K = 0.

D.3



When t > to, the above conditions hold up to t = t,, when the

constant acceleration is removed; thereafter, the motion is

considered using the initial conditions, G = S, and 6 = , , then

Sh * D.8(a)

Now for t > t,, t = 0, i.e., I = ,so the general form of

the energy equation is
1%+1 0 <

h4I D.9

Now at t = t, = So and 8 = 6. so that from D.9, K is given by

+ 41' .'S .. 1

SI 41--S D. 10

From D.8 and D.1O

Hence,

so that from D.9, the required form of the energy equation for t > tg

is

2. kj 41

or

'D.11

Since S is always positive, and 6' has some fixed value for a given
p.. * *

hnd , the R.H.S. of D.11 is a maximum when 0= ; i.e.,

has its maximum value when 0= 0, and

MAK + ID.12
I•+1

Impulsively Started Motion (without initial loading)

Since = 0, the equation yielding Smax. , in this Case is

__ D. 13
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- _,

The basic motion equations state that (velocity) = Z (acceleration

X distance), hence the velocity of the base of the spring is given

by
va•

Z D.14

Combining D.14 and D.13 gives

D.15

Since = (. Sia (see Equation 0,2), the maximum acceleration

of the mass is

O'h ( !3 ') D.16

It is of interest to establish the input duration time Ate below

which the input can be regarded as an impulse. The impulse region is

defined as pertaining to duration times that are short enough that full

overshoot is not attained, and to determine the limiting duration, the

relationships for '"")relevant to the impulse duration region, as

defined above, and to the full overshoot region (long duration times)

can be equated.

It has been shown in Appendix C that for a long duration input,

the peak mass acceleration is from C.IO.

The peak mass acceleration for an impulse type input is given by

D.16, and putting V = in Equation D.16, the following

relationship is obtained

S%- -D.18

so that on equating D.17 to D.18 at the critical duration time Ate

we have

D. 19

which yields ( _ ?.-Z"

D.20

D.5



Confining attention to the particular case of n = 1, (linear spring),

the following expression for the peak mass acceleration is obtained

from D.16.
M 

D.21

and the duration limit for an input to be regarded as an impulse or

spike is from D.20

Atc D.22

D. 21 may be written in the form

or if the accelerations are measured in G units

This equation holds for a linear spring in the impulse region

where AL e

Spinal Headward Accelerations

It has been suggested that the maximum tolerable velocity

change, AV , produced by an impulse, is about 11 fps., and from

Ruff (Ref. D.1), the maximum permissible deflection of the spine is

approximately .05 ft. Thus, from Equation D.15

4n-1 AV I

from which the following values for ý are obtained:

(rad2/sec2/ftn-]) Y(rad/sec/fn--) n 2 (rad/sec)max

1 48,4oo 220 220

2 l.45 x 106 1.205 x 1O3  270

3 3.87 x 107 6.22 x 1O3 311

4 9.78 1 108 3.13 x .0 4 350

D.6



From Equation D.20

A reasonable value for Y at the critical time can be taken

at 40 G from the curves presented by Eiband (Ref. D.2), and using

as computed above, it is found that the value of t is approx-C

imately 0.009 sec. for all values of n.

D.7
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APPENDIX E

THE INFLUENCE OF DAMPING ON A
LINEAR SINGLE DEGREE OF FREEDOM SYSTEM

SYMBOLS

A amplification factor (sinusoidal inputs)

C damping coefficient

F force

F impulse (force x time)0

FS force developed in spring

Fd force developed in damper

k spring stiffness

K damping constant

t time

tI critical duration time for impulsive input

v velocity

y mass acceleration relative to fixed datum

Yc input acceleration

Yco amplitude of sinusoidal input acceleration

C steady (step) input acceleration

g •deflection, velocity (rate of change of
, ,deflection), acceleration (rate of change of-

velocity) of spring

Dirac impulse function

phase angle

w spring frequency

Co, damped frequency (L4o -t- C )

Si sinusoidal input frequency

constants used in reducing Equation E.23

13 1 13 to partial fractions

E.1



Damping Is always present in a mechanical system, and the human

body is no exception. Physically, this means that vibrations set up

in the body will gradually die out, and the peak values obtained will

be reduced. The basic model can be modified to include the influence

of damping, as shown in Figure E.1, where the overall damping effect

is represented by a "dash pot" mechanism, which may be regarded as a

loose fitting piston moving in an oil-filled cylinder that introduces

a viscous frictional resistance, proportional to the velocity.

Y (mass or output

mass m acceleration)

(spring damper (damping constant 2K)
frequencyco )

f Yc (input acceleration)

Figure E.1

When the mass moves relative to the datum, a force develops in

the damper which is equal to the damping constant x spring velocity, i.e.,

;:A =z Kt1.1
The damping constant has been taken as 2K simply for convenience when

handling the equations that govern the motion of the system.

The force developed in the spring dueto compression,is that

described in Appendix B, and is given by

F6 I= k6 E.2

These two forces act on the mass, resulting in an acceleration

given by

k6 k+al<rnP-

As shown in Appendix B, 6 - 6 , and the above equation becomes

MP •

E.2



Remembering that W = - , and setting = C, the equation

of motion of the system can be written

. E.

It should be noted that when damping is included in the system,

the total force developed is not just that in the spring, but has an

additional component, due to the damper. This means that a tolerance

criterion could be based on the total force- (or mass acceleration) or

the spring force (or ). In either case, E.3 has to be solved forS

and to simplify the mathematics, a step input of the form

will be assumed.

Again making use of the Laplace transform method in solving the equation

of motion, L 9(:) = XQ , and E.3 can be transformed to

for 0 = 0, 6 = 0 at t = 0, which assumes the spring has no deflection

or velocity at zero time. Then,

0(
)C -

P-+ %xCPr +

A direct inverse Laplace transform exists for the denominator, and three

solutions are obtained depending on whether O.Ois greater than, less than,

or equal to c

ifw' C_ , the effect of the damping is such that, when the forcing

function is removed, the displacement (or deflection) of the mass

approaches zero asymptotically, without oscillating about the 0 = 0

position.

Under these conditions, the system is said to be critically damped.

For this case, the solution of E.3 is

h ' < C , the damping is so great that, when the forcing

E.3



function is removed, the deflection returns to zero slowly with a

dead beat motion. The solution is

2.
where (-m), (-n) are the roots of the equation + Z aP + L 0

When W'>C , the case most applicable to the human body results

since it represents a system where the damping is small, but not

negligible. The deflections of the mass are periodic, but with the

output amplitude less than the zero damping case. In this case,

the oscillations would gradually damp to zero. When l•0> Ce, the

motion is described as sub-critically damped. The solution of the

equation of motion in this case is

where (03Z - ui- C , and tan =

Writing

and using the fact that sin -O and cos SA ,.4 can be

written

Differentiating with respect to time gives

-¢I-"
C- c(ACt: - 0C 'CeL4L

C, A. C

so that
"A • • + LJo)

-. ~ 4 4 ,^L 0 t (~

and since C • L0o

E.4
; ' i _ l l i I



A further differentiation with respect to time gives the spring

acceleration

C 2. : (w C& t ee-! 4, o
WOO

E.6

Making use of the 0 relationships, E.6 can be written

SinceE.7

Since = , the expression for the mass acceleration is

oo E.8

An alternative expression for the mass acceleration can be derived

from E.6, viz.

0= I r- tý C . o4 - c W .oE .9

When the damping is removed, c = 0, and (4 = W, and E.9 readily

reduces to the undamped case discussed in Appendix B. (See equation

B.10)

The maximum value attained by •, for a step input will now be

determined. Differentiating E.9 yields

- C e cm WOo( C C-66 O C't-

oA~

The turning points are obtained by equating this expression to zero,

and since e-- is positive for all values of t,

so that 2 C

E.5



The expression _4 4h must now be investigated, and

-W"C) e___ ':4~%w, +(W,~." r- 294e C4.4 WtiL

WA o•- • { c •: )C Li•o& - (3•-c• M•.Oot
~oO

Now, if tan O~ t -WCoe ,

A4*'L 
W ).~ c 0 ~ -- 4 L

and the sine is negative when the cosine is positive, and vice versa.

Hence,

2 a2

qt is a maximum when this expression is negative, and evaluating

the terms inside the brackets gives

The expression within the bracket is always positive, so ca4'

is negative when the sign outside is negative, and the peak mass

acceleration occurs when

.4ovi -it = + ."A... O d4-• I --- (LocL')
W LA3 1 WE.1O

Substituting the values of E.1O in E.9 gives an expression for

the peak mass acceleration

Therefore, 0

where t = taj•' ( -I2Xc

Note that if c =0, t 0iI , and E.11 reduces to

E.6



as predicted by Equation B.1O. Figure E.2 shows how the output of

a system is influenced by the choice of damping values

damping ratio c

output to
input ratio3

Figure E.2

Impulsive Input

The Dirac impulse function will be used in solving the equation

of motion. Such a function is zero everywhere except at t = 0, when

it is infinite, in such a way that

-c0

where W (t) is the Dirac function. The equation of motion is

M E.12

where F is the impulse (force x time) applied at t = 0. The

Laplace transform for S = 0, 6' = 0 at t = 0 is as follows:

0 X+ % C PX + ý:L-

where V is the velocity achieved by the system. Hence,

The inverse Laplace transform gives
-ct

- E.13:

E.7.



where = WO1- I and E.13 holds for W1>'• ; i.e., the sub-

critically damped case.

The maximum deflection is obtained by investigating the turning

points of E.13.

equating this expression to zero gives

Z7 E.14

This implies two conditions since the angle might be in the positive

or negative quadrant. A second differentiation gives

~~~~v~~~ w0 .~ 4 ~~~ CA-4L

.C 10 L.~
E. 1.5

For a maximum deflection, this expression is negative. From E$.1,

SJ) ¶ = ± ) !±.

the sign depending upon the quadrant that contains Wto. Substituting

these values in E.15 gives

d -9CLV (W.OL C") +Ot +c&~ 2 .C)-4W

which leads to

di"

C-~=f V v [o'*+e) .fVV•' Sý 0 -oW - u-

Sinee e is always positive, ri is negative when the angles are in

the positive quadrant; i.e., a maximum occurs under these conditions.

From E.14, the maxim.m occurs when

_.. , E.l4(aj

E.8



Now, since 0= , and = -- , = -& , so that the mass

acceleration for maximum deflection is

6 V ( •c +C)1

but WO ' = 1 '- •" so

S~E.16

and the mass acceleration at any time is given by

Y % (LO.C1A LdJb L---C±-

Now the maximum mass acceleration does not occur when the

deflection is a maximum (since damping is present). To investigate

this condition, Equation E.13 is used
g =V.e- C t

and

Y

"Jo

which can be written in terms of a phase angle • as

VP CL

where sin N• : LO C L j 4  _,o&Jc-'' •J+C l')"12

(This can be proved by expansion of the sin (Wot + # ) term, using

the sine and cosine values given above).

Again, by similar reasoning

=V C ý

Now : - ' and therefore

c.L- E.17

E.9



The turning points of E.17 are given by =e 0

i.e.,

i.e. when

E.18

Evaluating gives

4  0 ' 4 ( ~eo- '

From E.18

The sign depending on the quadrant as before. The above expression

is negative when the sine and cosine are negative. (This can be

shown by evaluating Ct2 p/dt as was done in deriving E.15).

Hence, the ieak mass acceleration is given by

,(rn a v W E.19

where t _ _, , ,0_o• _..5

When c = 0, E.19 reduces to

which agrees with the non-damping case of Equation D.21.

It can be seen from E.18 that as the damping coefficient is increased,

the time to reach maximum mass acceleration is reduced, and will occur

at t a 0, for damping coefficients greater than a critical value C •C

When t = 0

and evaluating tan 2 in terms of tan 0 (tan 0 -

dy CC.c

E.10



and for > Z the maximum occurs after t = 0.

It is of interest to show how the damping term influences the

duration time for which the impulse theory is applicable. From E.19

4.ov

where t, is the critical duration. The mass acceleration for a system

subjected to a long-duration input is given by E.11 as

jC t

The critical duration time occurs when these two expressions are equal

as suggested in Appendix D. Hence,

L,e

Expanding the exponentials gives

- ,__ -) .2.. -4 . •.--- a

If terms in C are ignored the undamped condition P, = is obtained,

and neglecting C2 terms gives

2.•:, c.-, = -ct:

solving this equation gives
I~ ý r- (a - C_c•

Zc
Now from E.10

and if the damping is small,

so that

WO (for small angles where tan • = e )

E.11



Using this value in the expression for t, , the following is obtained

+- I4. C -

Now, CO. C O' =C' for small damping effects, and a

solution for t. is obtained by expanding the expression under the

root sign
(7- , •- --C - )"1/3.)= C -) +

CO

Since the negative part of the root is relevant in this case,

(the smallest value of tg io required)

t,-- ~ ~ -,c [ - C- -

and again neglecting C terms,

C I& E.20

Sinusoidal Input Acceleration

In this section an acceleration of the form

is considered, which represents a sine wave of amplitude and

frequency D .

The equation of motion for a damped, single degree of freedom system is,

from Equation E.3

E.21

The Laplace transform of sin SIt is

E. 12



and so, for the initial conditions . = S = 0 the Laplace transform

of Equation E.21 is

Co E.22

Therefore

To perform the inverse transformation, the right side of Equation E.23

must be expressed in partial fractions.

Let

= n [ + o +/2" 3 3.23(a)

Combining the terms in this Equation gives

VI 1 242 +G1 o .24

and equating coefficients of powers of p in E.23 and E.24 gives the

following set of equations for c and 13

o0(+0(1 0 (a)

0 (b) E.25

-Wl.+ W:x.+ ,= U3 (c)

/I -a +C.;.W d)

Substituting for 0,i from E.25 (a), E.25 (c) gives

w 2.

and forfA of E.25 (d) into E.25 (b) leads to

10K,/ 0

These two equations are rewritten

ZCfWo 1 ( W 0

E. 13



Crout's formula is now used to solve this pair of simultaneous

equations when the following values of O(x and f9: are obtained

02 _ (2_ _aL__ - W I-l E.26(a)

2,c -D 11 E.26(b)-- + 4

Values for a•i and (3, then follow from Equations E.25(a) and (d)

f_ )+ eE. 27(a)

/31 C W2." E.27(b)

Substituting for the v('S and/PS in E.23(a) gives

S•o'O-n en w'-) •) - ;Ze '+ ew2-al')t. ¢-4-: •

(t3WA +4C- - + ;Zrp p2..£ ~

The inverse Laplace transforms (Nos. 50, 51, 11 and 40 of

Ref. E.1) are used to give

-C-
_____-_ I.•__ ____ *-e_.c• ,•o•I 'L-,) A A," L (o" °W-'t'

---- ý t - ZC W

+ + c 1 E.28

+ .i2

where • = tan-'w-o andC

The solution for 6 has two distinct parts one part

We-c 4l-174W?)44;-,v wI:~ + CW4,ot 0

with a frequency (&Aýo) dependent upon the parameters of the system, the

second part

-XI e - 2c c*-s lk

with the frequency (42) of the forcing function. The first and

E.14



second parts of the solution are known as the Transient Solution

and the Steady State Solution respectively. The transient solution

has a factor -Ca , so that as t increases so the amplitude of this

oscillation decreases and this motion is eventually damped out, leaving

only the steady state solution.

Although the absolute maximum usually occurs while the transient

solution is still significant, the steady state solution is of great

importance for long duration inputs of an oscillatory nature, and

this case only will be investigated.

The phenomenon of resonance is well known and will be demonstrated

with the use of this model.

The steady state solution is

•. •i)• • •2_•E. 29

which can be written

where = -..& R-C

This solution is a sine wave, out of phase with the input acceleration

and of amplitude

The ratio A of output to input amplitudes is the Amplification

factor and can be written

which must be maximized with respect to AI to obtain the largest ratio

of output to input accelerations.
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A maximum or minimum occurs when

10

ime L/

so that either
(• __•)• V.• =o

or

or

The first expression is the sum of two squares and so for real W•,

t and C cannot be zero except for the trivial case (no motion)

(. = W = C = 0. The third expression is a statement that the

forcing function is zero at all finite time, again trivial. The

second expression gives

= E.-30

for which the following value of A is obtained

A-

I I

Z C WoE.31

Now ' + 4 a has a maximum when

(W2.-._r1)..' + 4 _ln has a minimum since the latter expression

if positive for all real values of the variables, so the latter

expression need only be investigated.

a -. C L - O ' + L 4 2 S ~ - 4 S - & ) +

E.16



The condition for a maximum or minimum from E.30 is Si' = 2C-2*

so that using this condition in the above expression gives
-• +'(u°'•c) S 2 = 9 1-_16Cý-

So if - is positive, a maximum occurs in the expression

and the amplification factor has a maximum value (for the steady

state case) when 202= •-•C" and has the value

A(n•K -

where 0 = Co-C

It can be seen that the zero damping case implies infinite

magnification, but when any damping is present finite values result

that are smaller for high frequency systems and high damping

coefficients.

E.17



REFERENCES

No. Name Title, etc.

E.1 Pipes, L. A. "Applied Mathematics for Engineers
and Physicists," New York,
McGraw-Hill Book Co., Inc. 1946.

E.18



AFPENDIX F

EJECTION OF ESCAPE CAPSULE OR SEAT

SYIBOLS

A amplification factor 'P vmaA

F applied force

f f for steady applied force

k spring stiffness

m mass of occupantP

m mass of capsuleC

M :(m +m)
c p

q -

t time

v velocity

vR velocity from rigid body theory

v Cvelocity from separate mass theory

YC acceleration of mass m Crelative to
fixed datum

acceleration of mass m relative to
fixed datum

fYs initial acceleration at t = 0

deflection, velocity (rate of change of
, deflection), acceleration (rate of change

of velocity) of spring

SS initial (static) spring deflection

Sspring frequency (n = 1)

F.1



During the ejection of an escape capsule or seat, the initial

phase consists of an acceleration up the ejection rails, caused by a

rocket supplying a force F. Large positive spinal accelerations are

imposed on the occupant, and it is important to determine, at the

design stage, whether the accelerations are physiologically tolerable.

Yp man-mass

mass of mp acceleration

occupant

frequency

WL

mass cu mc YC input acceleration

capsule or FP
seat

Figure F.1

Using the simple model of Figure F.1, where m and m are thep c

occupant and capsule (or seat) mass respectively, the equations of

motion can be obtained by applying Newton's second law. Considering

the occuian, the accelerating force is that developed in the sprirng,

hence

hin

where a non-linear spring has been assumed.

Remembering (see Appendices B and C) that

C@

t1i R.bove equation becomes

and rdopting the notation of Appendix C, that WA_ = = this

eqi,.:ion can be written

= ý.S+9F.1

F.2



Considering the mass mc , the resultant force acting is the difference

between the applied force and the "reaction" developed in the spring.

Hence,

-ý F-

so that

F_

and since

it follows that

fh

rr) C rF.2

Equating F.1 and F.2 gives the equation of motion

Constant Force Application

As in Appendix C the substitution q = • is made;

therefore, S =' , and F.3 can be written
cIS

where -a has been replaced by M for convenience. Transposing and

integrating yields

0

0SS

The integration limits have been taken from 6s , the static deflection,

to gNy , the maximum deflection, which corresponds to a range of q

from zero to zero, as explained in Appendix C. The static deflection

could be due to some initial g field at time t = 0 which can be

included in the quantity f. The left hand side is zero for the

limits shown, so g Ma

f {fj 0

F-3



Integration gives
41+M) h+1

F.4

Since the initial acceleration can be written

F.A becomes h+1

F.5

Again, the aak mass acceleration •rLJa) is given by

so that

and F.5 becomes

___ ___

F.6

If 05 = 0, equation F.6 reduces to

-0 1 4  (rn
MC 4- V ,&a

or
F' (L-h) - _____

Mr 14 tipP) F.7

If n = 1, (linear spring), the peak (man) mass acceleration

is given by

S• ÷ •eF.8
F

Note that is the acceleration obtained when regarding the

two masses as a "rigid body," and the result is identical to that

given in Equation B.16. The conclusion is, that for a long duration

step input, the acceleration history obtained by taking the occupant

and capsule as a rigid mass, can be used to assess tolerability.
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It is possible to define an amplification factor given by

A = peak acceleration on occupant
peak acceleration on capsule

The peak acceleration of the equivalent occupant's mass is given by

F.8, and the peak capsule acceleration is attained when the force

developed in the spring, in opposition to the applied force, is zero.

Hence F
g )'" = -

and

A4F rP ' c mdm+

Thus, the lighter the capsule in relation to its occupant, the lower

is the relative acceleration amplification. However, the peak

occupant acceleration is always twice the value which would be

calculated if the capsule and occupant were regarded as a combined

rigid mass.

Impulsive Input

In the present context, an impulsive input would be a force F

which lasts only for a short period, At, so that the spring does not

deflect significantly (the force developed is small). Newton's law

gives

F =

tivln& a velocity change

which is greater than that calculated from rigid body theory. After

the spike input has been removed, the motion of the spring continues

and the velocity change given above constitutes an initial condition

for the subsequent motion. The equation of motion is now

+ I m)= O F.9

F.5



F.9 has to be integrated between certain limits which must be

ascertained. The velocity change due to the spike input gives a

velocity vc a k to the spring at t = 0, when it can be assumed

the deflection 9 is zero, and when the maximum deflection Sma

is reached, the velocity is again zero. Thus, substituting

q - ,as before, SO L and

which gives

i.e.

giving

.. _ tvt..÷ __gj ,,
and since

M-4, F.10

Now, using rigid body theory, the initial velocity change is given by

AVR F~tAv• - +M

whereas

V IF at

Therefore,

Av~~~4(1 LVL+M)

so that F.10 becomes

F.6



If F.11 is compared with D.16 of Appendix D, it can be seen that the

two equations are identical (initial deflections have been ignored

in deriving F.11, but could easily have been included). Hence, it

can be concluded that, employing the spring-mass analogy of the human

body, a man-capsule system subjected to an impulsive input can be

analyzed by the rigid body theory.

The results of the analyses described in this Appendix might

appear somewhat negative, but it has been possible to demonstrate

mathematically that the dynamic model of a two mass system can be

treated as a rigid body in calculating the peak acceleration output

of the equivalent man mass.
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APPENDIX G

THE EFFECT OF A LINEAR CUSHION ON TOLERANCE LIMITS - EQUIVALENT SYSTEMS

SYMBOLS

c damping coefficient

E energy absorption capacity of cushion
C

F spring force

k spring stiffness

K damping constant

m nmass

t time

•t duration of input acceleration

Atc duration limit for impulsive theory

v velocity

y mass acceleration relative to fixed datum

YC input acceleration

CC steady input acceleration

88,6 deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

Ci spring frequency

u.1

SUFFICIES

i man

2 cushion

B conditions at bottoming of cushion

S initial (static) conditions

G.1



When a cushion or other form of elastic restraint is placed in

series with the human body, the system can be represented as in

Figure G.1. The presence of the dampers complicates the problem

considerably, since the proportion of the resultant force transmitted

by damper or spring depends on the mechanical characteristics of each.

yj (mass or output
P acceleration)

m
p

k, !MAN

(spring 2K,
stiffness) (damping constant)

kz ICUSHION

(spring 2K,
stiffness) (damping constant)

c(input acceleration)

Figure G.1

If either the dampers of the spring are removed, each system

can be reduced to a simple equivalent spring or damper. This

simplifies the mathematics and, although not a complete representa-

tion of what actually happens, will give some insight into the

influence of the various components on the occupant.

Equivplent Spring System

In the static case, a force F would produce deflections ,and& 1

in the man and cushion springs, respectively, so that

G.1
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F =

If the two springs are replaced by a single equivalent spring,

the deflection would be S and the force-deflection relationship

is

+ 0 .2

Hence, the equivalent stiffness is given by

F F

G-3

The equivalent natural frequency J= A follows from G.3, and

can be represented 
by

where *'\ _

Equivalent Damper System

For, two dampers alone in series, it can be argued similarly

that

F I< V

and

F =2kV = V + 11V..)

Hence, the equivalent damping constant is given by

K = G, _5_K" tv,+V') t\, +K .

and the equivalent dampir.g coefficient C = becomes

C - G.6
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Model with Zero Damping

If the cushion-man system is now represented by a single

equivalent spring of frequency OJ, the solutions already deduced

apply. Thus, for an impulsive input, the peak mass acceleration

is given by D.16, and for a linear system (n =I ), this becomes

•p ~I- ..+-a G.7

The duration 6 t which limits the impulse theory is from D.22c

Now, since V = t, employing G.7, the following ratio

can be formed

SG.8

For times greater than A tc, the ratio given in G.8 becomes 2,

since for an undamped system the overshoot of the ouput is 100%.

Hence,

P~~~ Z S, t , N.

It follows that although a cushion does not reduce the severity

of a long period acceleration, it can be beneficial in the impulse

region. This conclusion is based on the fact that the cushion

does not bottom. The influence of the cushion can be seen from

the relationship

M&na4 (with cushion) (.. )2I i G.9
r ,o, (no cushion) ( wJv&-' (1+t)

This ratio is plotted in Figure G.2, which illustrates the fact

that for a non-bottoming cushion, the attenuation of the input

is greater for large values of A'1 = k/ i.e., for low cushion

frequencies.
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1.0 non-bottoming cushion

ratio of
'p (max)

with cushion
to ip (max)

without
cushion

0
2.0 4.0 6.0 8.0
spring stiffness ratio

Figure G.2
Cushion Bottoming

Bottoming of the cushion occurs when the deflection of the

cushion spring has a value Sze (say). At this instant, the force

in the spring is

so that

Just before bottoming, the kinetic energy of the system I/, rn1,V

where Av is the velocity change of the application point due

to the impulse, is distributed as potential energy and kinetic

energy of the various parts of the system. When bottoming occurs,

the lower spring retains its potential energy only. Since an

impulsive input is under consideration, the mass does not move its

position initially, although the spring (k,) may have velocity 8, ,
due to compression. As shown previously, the maximum deflection

of will be attained when the spring velocity ý, is zero, so

that the surplus energy is given by

O2 .1
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i.e., total kinetic energy of the system minus the potential energy

retained by spring k2 will appear as potential energy stored in

spring k, • Hence,
2

and 2.

•v• = r=-•"I•0 * 10

0.10

Now, Wo I (max) and 2 S is the total energy

absorption capability of the cushion (E c). Hence, G.10 can be

rewritten

so that the peak mass acceleration is

If allowance is made for some initial deflection Sc in the springs,

6.10 becomes

and G.11 takes the form

*lp G.12

where VS w.= S xs

The condition for bottoming is that the available kinetic energy

must be equal to, or greater than thepotential energy storing

capacity of the system, i.e.

where the suffix B implies conditions prevailing when spring ka.

bottoms. When the two sides of the above expression are equal, the

velocity change that will just cause bottoming of the cushion can be

deduced, viz.

G.6



and since ab13

IN. v22

or

A 013

When 0s = 0, G.13 simplifies to

S _,. a.14

G.14 is plotted in Figure G.3 to show the influence of cushion

stiffness on the bottoming velocity ratio.

3.0

Av increasing yS

1.0

2.0 4.0 6.0
Figure G.3

Thus, for a low value of k2, (i.e., a weak spring), the bottoming

velocity is small, whereas a large•k also implies a low bottoming velocity

since the spring deflects only a small amount and cannot store

large amounts of energy. This latter point has important implications

when considering the direction of application of the impulse, since the

natural frequency of the body ('i) is different for each direction.

The attenuation of the input acceleration for non-bottoming velocity

changes is given by G.9. For values of AV >.6V from G.11

G.7



so that
9tr.M" (with cushion) I -

9t r a"- (no cushion) 0.15

In this case, the energy absorption capacity of the cushion is

important, but the stiffness ratio (.01) does not enter the expression.

Equations G.9 and G.11 show that, in impact cases, the presence

of a cushion is always beneficial.

Long Duration Input

If the cushion does not bottom, the usual 100% overshoot will

occur (no damping). The general solution of the equation of motion

has been deduced in Appendix B. From B.7

W2. 0.16

which refers to the equivalent spring. Now, the equivalent spring

deflection must be the sum of the individual deflections, so

and since from G.1, k,

g :6.+&• = sG-''I017

Now bottoming occurs when 6• = 2 Bat t -t and from G.16

S = ~BL't-) ~ I-C~~B)G.18

Using the value of Co given by G.A gives

2

If the acceleration needed to bottom the cushion is defined by

= : )oS15 G.19

and from G.18

SC'" W tC- FS G.20
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Differentiating 0.16 gives the spring velocity at bottoming

so that ,< .
_ a() A+• _

LA.) (14-al.

Remembering that AZ,-'9 + c4" 9 and using G.20, the above

equation becomes

Equations G.18 and G.21 give the values of the equivalent spring

deflection, and velocity at bottoming. Subsequent motion will

affect only the spring ki• , and the equation of motion can be

solved using G.18 and G.21 to provide the initial conditions,

i.e., taking t 8 as the new t = 0.

The equation of motion is

Ot t%•

and the Laplace transform of this equation is

- •,-' - o + • a =ý0

where X.o S && j: L- ) o,"4 CL 4X& 8

H en ce , C I4 LO _ _ _

the inverse Laplace transform gives

Substituting Xo $i9- and -Xi = x, gives

S- -,(••- + ,,G.22

Where 60 is now 6O , since spring k is fully compressed.

Using the values of S11 and S of G.19 and G.21, the above

expression becomes

G.9



and W2' . The above equation can be rewritten, including

a phase angle viz.

0.•23

where sine o(-WK _______+-_)-_ Oat

(This step can be shown by expanding sin (0iL- 4) in Equation G.23).

The turning points of occur when PAi/d&_ 0, i.e., when (Idi,+O )

has values of ,'1/) 'V/ etc. For maxima, -Ye is negative,

i.e., when ( OW L 4 ) has values •Ar/2 , 7''/- etc.

Hence, the maximum mass acceleration after bottoming has occurred is

given by

0( + [+2od O4s G.24

Note that if 0= , i.e., the cushion is already bottomed, G.24

reduces to the usual expression

For the condition
S. .. o(~1.r2'

or Z

the overshoot is greater than 100%, which means that, under these

conditions, bottoming during a long duration input can have serious

consequences.

A plot of the ratio peak mass acceleration to input acceleration

( • ) against A-) is given in Figure G.4, for various values of

. The graph illustrates the fact that decreasing the cushion

stiffness is advantageous when bottoming can occur. All the curves

are above t //, . , since no damping is present, and the pulse

duration is long enough for full overshoot to have been obtained.
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APPENDIX H

REBOUND IN A LINEAR SYSTEM

SYMBOLS

k spring stiffness

m mass
p

yp mass acceleration relative to fixed datum

"YC input acceleration

t time

t, duration of input acceleration

tz time when restraint becomes active

C( step function input

deflection, velocity (rate of change of
deflection), acceleration (rate of change
of velocity) of spring

0 phase angle

w spring frequency

SUFFICES

1 man

2 restraint

H.1



A linear single degree of freedom system (Figure H.1) will be

used to investigate the magnitude of the acceleration imposed on a

human during a rebound process.

step input (ck) (spring
stiffness)<

mo (output)

Yc kt MI, y

(input (springaccelera-

tion) stiffness)

(tim ) t Yc (input) YC
t' (time) t = 0 t t'

Figure H.1

The occupant of a seat or capsule is represented by the spring k'
and kj is analagous to some restraint device which might be a

harness (in extension) or a shock absorber (in compression). A step

function input (0:) of duration t1 is applied to the base of the

spring k, , which causes the spring to compress. At t, the input is

removed and the spring returns to its original position ( S, = 0), but

with a velocity k, . Up to this point in time (t2 , say), the spring

k2 has been inactive since the restraint only acts when the

occupant leaves his seat. For , , k, is inoperative and k,

deflects.

Up to t = t1 the equation of motion of the mass takes the form

derived in previous appendices, viz.

o(H.1

The solution of this equation is developed in Appendix B (Equation B.7).

When tij•)', , the equation of motion is

Wf g =+ H.2

which also has been solved in Appendix B, using • and S (irom H.1)

H.2



at t = ti, as the initial conditions. (See B.17 and B.18). One

form of the solution given is

H.3

where Yo and Xi are the initial values of S and 8 , respectively.

tan 9 = !! , so that sin _ = .___o and cos = _+

so that expanding the sin (ut9+) term of H.3, and substituting

these values, leads to

SD~ ~ it -{4LL C-VS¶( -t 1)(A HA4

where time is now measured from t = t,.

During the rebound phase, starting at t2, the equation of motion is

=0s + -o H.5

since there is no applied input. Now, at t = t2, S, 0= O

and the solution of H.5 is similar to that given in H.3, but with Xo-=O

i.e. 0.O hence

Sr AtH.6

and the acceleration is obtained by two differentiations with respect

to time, viz.

-= X H.7

where time is measured from t = t,

To insure that t in these equations is always measured from true zero,

H.7 is rewritten as

S--H.8

and similarly H.A as

soH.9

so that the value of Xlin H.8 is, from H.9
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Using this value, H.8 becomes

-011 ý4- I &4';. wdt, W* IO -j&-

This expression will have its maximum value when sin co, (- .-t,)

so that

LO, H.10

For a very short pulse, use is made of the fact that the sine of

a small angle approaches the value of the angle (in radians).

Hence, H.1O becomes

cc, for small t

and

r rH.11

This expression is similar to that derived in Appendix D (cf., D.23)

except that WOx replaces Wo.

Note that H.10 itself has a maximum value for a certain Woit'j(" input

duration). Writing H.10 in the form

t~o

this expression is a maximum when cos to3tt = 0 or Wot_ etc.,

and when sinLitg -i •- , t I/ .. etc., so that

which has an ultimate maximum when tCi(V start of rebound) has

the value "/l etc.

Hence

I' 2 ,Y H.12

The result resembles the standard box 100% overshoot case, except that the

expression H.12 contains a frequency ratio. The application is quite

general in that (Q, and to, can be regarded as equivalent frequencies.

Thus, the effective contribution of the spine can be included in WLt

and a seat cushion spring in C01. The equations show that considerable

amplification is possible if the restraint system is stiffer than the

system receiving the initial impulse.
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APPENDIX I

THE INFLUENCE OF RISE TIME

SYMBOLS

g acceleration due to gravity

L denotes "Laplce transform of"

L" denotes "inverse Laplace transform of"

m mass of the systemp

n an integer, takes the values 0, 1, 2, 3 etc.

t time

tr rise time of the input acceleration

Yc input acceleration

acceleration of the mass mSp

rate of onset of the input acceleration

g deflection of the spring

4)frequency of the mass-spring system

I.1



The fact that rate of onset influences human tolerance to rapidly

applied accelerations has been recognized by early workers in the

human factors field. As explained in the main text, a more useful

parameter to consider is the rise time (tv) which is the time

elapsed before the peak or plateau acceleration is obtained, as

illustrated in Figure 1.1.

Yp(mass

plateau G's _ eak e or

output

t tr, time t t r time accel.)

(a) Figure .1 (b))

A linear ramp type of acceleration, followed by a continuous

constant acceleration (Fig. 1.1 (a)) is more amenable to mathematical

analysis and will be used to illustrate the influence of rise time on

the resultant mass acceleration.

The equation of motion of the spring-mass system (Fig. 1 (c)) is

derived in the usual way (see Appendix B) and can be written

where the input acceleration Yc has the values

for 0 • U 1.2(a)

and

C /•/ constant for e> Lr 1.2(b)

1.2 (a) describes a ramp function and 1.2(b) a constant input function,

both of which have direct Laplace transforms (e.g. transform numbers

78 and 79 of Ref. 1.1) which are

131--3 -t for the ramp function
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and

A tr-e for the continuous function

These two can be added so the Laplace transform of Equation I.1 can

be written

= )
so that -t)- _

where the initial conditions & = & = 0 at t = 0 to apply.

The inverse Laplace transform of the first term is

-ý W (A)A)

and for the second term

(Theorem VII applied to transform 47 - Ref. I.1)

Hence the spring deflection is given by

Applying the basic addition theorem of trigonometry to this

expression gives

-•

Since , the mass acceleration is represented by

"/3 y - -*, )ý j., 1.5

Turning points exist when

ŽP =w L ) ~ =0

i.e. when

where n is an integer.
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The maximum value of exists when is negative, and

Substituting the turning point condition obtained above yields

+- 1.6

depending on the quadrant of wt (- + for n = 0, 2, 4 etc.

- Ue. for n = 1, 3, 5 etc.) Thus the sign of 1.6 depends on the sign

of sin W , and the value of n. The condition n = 0 is of no interest

and when n = 1, equation 1.6 is negative when sin •P is positive,

i.e. when

0Ti

so that

t must be <

If n = 2, 1.6 is negative when sin _4.b is negative, i.e. when

-ký r <

so that t. lies between ;"/Lv and 4- T1/a

Summarizing these conditions, the mass acceleration is a maximum

if for n = 1, and if Y ty '"/• for n = 2 etc.
if ET 1< W1 - - -"

The peak mass acceleration can then be written

WO t isr111 W-t 1.7

which satisfies the conditions deduced above.

Now /3tv is the plateau acceleration input, and the following ratio

can be formed

S1_,..8

which for n 1 and y= 0 reduces to

1.4



since in the limit, as tr approaches zero, approaches unity.

This agrees with the case of a step function input (Equation B.16)

which corresponds to a zero rise time.

Equation 1.8 is plotted in Figure 1.2 and since the location is

in non-dimensional form, the result is applicable for any value of the

variable parameters.

4j

0

P-H

0

p4

P 4.

T, ~Figure 1.2 77

These results indicate that for very short rise times full

100% overshoot can be attained, but as the rise time increases the

overshoot is reduced and higher input acceleration can be applied

before the level becomes intolerable. Rise time should not be

confused with duration time. Both parameters influence the peak

mas acceleration attained, but in the present study the influence

of duration time has been eliminated by assuming a continuous (long

duration) input.

'.
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APPENDIX J

THE TWO DEGREE OF FREEDOM SYSTEM

SYMBOLS

A, B, C, D constants used in solving the problem,
A, E, a, D see Equations J.31 and J.32

k
c - - the damping coefficientm

F force

K damping constant

k spring constant

L denotes "the Laplace transform of"

m mass

p Laplace variable corresponding to time (t)

t time

A t duration of input acceleration

v velocity arising from an impulsive
input acceleration

y, Y, y displacement, velocity and acceleration
of some point of the model

deflection, velocity (rate of change of
deflection), acceleration (rate of chOnge
of velocity) of spring

resonant frequency of the coupled syf;tem

frequency of an uncoupled spring-mass
system

J.1



SUFFICES

C relates variable or parameter to the
point C in Figure J.1 (c)

p relates variable or parameter to the
upper mass-spring damper system

q relates variable or parameter to the
lower mass-spring damper system

T denotes sum of components of quantity

max denotes maximum value of variable

1, 2 used tu distinguish between the resonant
frequencies of the coupled system
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The next step towards a better mathematical representation of

the human body subjected to acceleration stress is to extend the

spring-mass concept to include two spring-mass systems in series, with

associated damping elements. Such a system is shown in Figure J.1

and represents a two degree of freedom model. The mathematics involved

in the investigation of this model is much more complex than that

associated with the single degree of freedom system, but the basic

principles are similar.

(a) (b) (c)

Figure J.l

The forces acting on each mass are evaluated and the equations of

motion determined in terms of spring deflection, spring acceleration and

the particular input acceleration. The equations of motion are then

solved to yield the spring deflection which is used to determine the

resultant mass acceleration. The peak mass acceleration is then

investigated by maximizing the relevant equations. This latter process

involves complex algebraic terms and a digital computor has been used

to facilitate the analysis.

Derivation of the Equations of Motion

The forces developed in the springs (assumed linear) can be

represented as follows:

Spring SP J. 1

Spring

J.3



where ý•and.$ are the spring stiffness values associated with

the springs. The forces developed in the dampers (of constants 2kv.

and 2k$) are

Damper r E -- p8•

Damper F$ = 2K'

The Equation of Motion of the Mass m

Only the spring and damper of constants kp and 2kgp are

attached directly to the mass m so that any force transmitted to theP

mass m due to an acceleration applied at C must be transmitted throughP

the spring t and damper 2Kp. Hence, for some given deflection
and rate of change of deflection ep , the force on mp is given by

J.3

on using the values for Fe and FT given in Equations J.l and J.2

respectively. Newton's second law of motion states that this force,

FýT , is equal to the product of the mass p and its acceleration

So, in symbols this statement is written

which is the equation of motion for the mass m .

Thme Equation of Motion for the Mass m

It will be demonstrated now that the equation of motion for

the mass m is
q

The R.H.S. of this equation states that the force PT acting on the

mass mq is the force produced in the spring and damper, hs and 2Ki

respectively, less the force FpT transmitted to the mass mip

j. 4



Consider the spring kt and damper 2(p . These are attached

directly to the mass min so that any force generated in them is

transferred directly to the mass T$. The force generated in the

spring k and damper 2 1<, is given by Equation J.3

FIýr =, kt S , .+ , Kt,

This force Fp" is trying, for positive Sp (compression), to push

the masses further apart so that the force on Vrtl is equal and opposite to

that on mo.

The forces in the spring k$ and damper 2K,, are given in

Equations J.l and J.2. The total force due to this spring-damper

system is

F = 2k i9+ J.5

and its direction, for positive 8S., is such that it tries to force

15¶ closer torný I that is, in the opposite direction to the force

on n due to the spring t and damper 2K •. The total force acting

on the mass M$ is then

F$T = F-F

and applying Newton's second law to mass Mi gives

hi = -
J.6

after substituting for Fp-1 and F from J.3 and J.5 respectively.

In order to introduce the given input acceleration into the equation

of motion it is necessary now to express Xpand *q. in terms of

p, Sq, and Vc the input acceleration.

The original (uncompressed) length of the spring k1ý is qo (Fig. J.l(a))

and from Fig. J.l(b) its length at some time during the motion is

The difference in these two lengths V1 " is the compression

in the spring S4 So

J.5



but

so J.8

or

Equation J.8 is now differentiated with respect to time to yield the

velocities

9C. - J.9

because Lk. is a constant for a given spring so that it does not

change with time, i.e. O$W/.1d- = 0. Differentiating J.9

with respect to time gives the acceleration of M, in terms of the

input acceleration and spring acceleration (rate of change of rate

of change of deflection)

An expression relating &) • and is obtained similarly. The

unextended length of spring kt. is seen to be from Fig. J.l(a)

ao = J .o - • , , , J 1 1

From inspection of Fig. J.l(b) it is seen that the compressed

length of the spring I is

= �-.12

Again, the difference between undeflected length and the deflected

length is, by definition, S hence,

or g+VP.-J-13

Now both Lpo and are constants, so that on differentiation with

respect to time, both quantities yield zero. Differentiating J.13

twice with respect to time gives

j.6



But, from Equation J.lO

Substituting this value in J.14 gives an expression for the

acceleration of e'

J-15

Now, using the results of J.1O and J.15 by substituting for y " ad and

the equations of motion of the mass m and m can be rewrittenp q

as follows

For the mass m

SJ.16

For the mass m

r~$ , J.17

Dividing J.16 and J.17 throughout by m and m respectively gives
P q

and

J.19

Adopting the definitions used in previous appendices some of the

above quantities can be written in terms of frequency (W), which each

spring-mass system would have if vibrating alone, viz.

and associated damping coefficient (c)

k--I = C•, I K•, = C% I- ) = el.

so that J.18 and J.19 become

and
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The terms are now rearranged to give the equations of motion in the

desired form

+Y~ w+,~st,.J.*20

and
+ (A 2,t'

S 4S ,ý b H J.21

Analytical Solution of Equations of Motion for the Special Case

of Zero Damping

Analytical solutions of the equations of motion, including the

damping terms are possible, but it is considered, at this stage,

that it is acceptable to avoid too much mathematical complexity in an

attempt to preserve physical significance. Also, the errors

introduced by ignoring damping effects in the human body are not

excessive.,

When the zero damping case is considered the equations of motion

become

gF5- V"C.t " J.22

and

+J.23

General Case of a RectanguLar InpUjt

If X P and X t are the Laplace Transforms of and S6
respectively and Yc has some constant value from t = 0 to t t,

Equations J.22 and J.23 transform into

• (I_ eL) )X J.24

and
-_ . o•%•J.25

for the conditions S• £,$ and s =Oatt=0

J.8



Equations J.24 and J.25 are simultaneous equations in S r and 6$

and can be solved by use of a standard technique. (Crout's Method

e.g. see page 69 of Ref. J.1).

+Cl•,++ +• •, ,.,,€ + , ,.,,

These expressions may be simplified by evaluating the terms inside

the btackets and regrouping
S•( t-,_~e+') "•

%tto + + WO

WI- P+) (I,'+-+ 'O J-2

The denominator of Equation J.26 and J.27 can be factored and written

as

+-n2.J.28

where 16

4(kL~N "%~~(+ +) 1 LA. z. J.29
= + _ ~+, Y o+,

i J. V0

and.0 1 are, in fact, the resonant frequencies of the system and

are termed coupled frequencies. They may be regarded as the frequencies

of two equivalent spring-mass systems that may be combined to describe

the motion of the two degree of freedom model.

Now since 4 4), W11 aend £O$ are always positive quantities
•+to 14 O j + (4 ,•)-

i.e.

But, the term

J.9



can be expanded to give

P P'

which is a positive, real quantity since WAP 'Oi* •%, are real

and positive. It follows that the original expression 94 iý

must also be real. Now G + W + -WP is real since each

term is real and has been shown to be greater than I( 4 )-

Therefore, the difference W 4 Q4 )p W- $2$ (j•et,) O- P Ptw

of the two quantities and their sum, which appear in Equations J.29

and J.30 respectively, are real and positive, hence .ll and Ili

must be positive, real quantities. Reverting now to Equations J.26

and J.27, these may be expresssed in partial fraction form by letting

cýA At + 4~- C -r.
0-f xi,*A j2+it J.3l

and +3

i.e.

Y- 4 14:L (0+.ý -1 J.52(a)

Now, the expression for X and Xj in Equation J.31(a) and J.32(a)

must be identical to Equations J.26 and J.27 so that the coefficients

of powers of p may be equated. From Equations J.31(a) and J.26, the

following set of equations for A,B,C, and D are obtained.

A+C -0

B+D -0

ASI, Cfl -o0

Hence

A=C=O

J. 10



and

•t

Similarly, the following equations are obtained for A, B, C, D, by

equating the coefficients of powers of p in J.32(a) and J.27.

M 0

=+ LO0

Hence

=0

S_ __ ( LA02S.22

since from Equations J.29 and J.30

Now these quantities are substituted into Equations J.31 and J-32 to

yield

and

These equations are now in a form for which direct Laplace transforms

exist and using No. 40, and applying Theorem VII of Reference J.l,

the inverse Laplace transforms obtained are for L > t

_, J33

Ln

J.11



and f or t < A t

a•- n_ •J.36

Equations J.35 and J.36 also represent solutions of the equations of

motion for a continuous step function input acceleration, since this

is the limiting case when A t approaches infinity.

Thus by solving the equations of motion describing the two degree

of freedom model, expressions for the deflection of each spring has

been obtained in terms of the coupled and uncoupled frequencies,

input acceleration and time.

Impulsive Acceleration Input

As in Appendix E, use is made of the Dirac Impulse Function in

solving the equations of motion when an impulsive input is applied to

the system. Equations J.22 and J.23 are then transformed into

and

where v is the velocity achieved by the system.

Equating the right hand sides of these equations gives X in terms

of XI so that the equations can be solved to give

•iV =W

4(7.+ 0P(4(+Wl"~) + W-ý'J-37

) + r .•) P• -,39

It can be seen that these equations are similar to J.26 and J.27, except

that VP replaces in the numerator. Remembering this

J. 12



fact, equations similar to J.26 through J,32(b) can be used, and

J.31(b) take the form

X 4.

The inverse Laplace transforms of these equations can be written down

(Transform No. 11, Ref. J.1), allowing S. and -9% to be expressed

as follows

V2

Aplication of the Two Degree of Freedom Model

There are two possible criteria for determining the permissable

input acceleration. One, a limit on 4p (and , ) has been used

previously, the other, based on the strain developed in the

spring put a limit on 9 CmLa) and *,m) Since a linear system

without damping is being used, it is permissable to use the results

of Ruff's work, Ref. J.2 to determine S(w-*) and S$64 4) if applicable,

since, in both cases, all the forces within the system are generated

by the deflection of springs. Instead of maximizing -p and 6$ as

has been done in previous appendices for (r , a digital computer

program has been written to evaluate and plot Sp and 8q, against time.

If a sufficiently small interval of time is used the maximum values

of Sp and 6$ may be obtained from inspection of the plots of these

deflections. The results obtained from application of this model

is discussed in the main text.
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APPENDIX K

THE THREE DEGREE OF FREEDOM SYSTEM

SYMBOLS

A constant introduced to assist in obtaining
the steady state solution of Equation K.43

B constant, see Equation K.27

C damping coefficient in uncoupled mode

damping coefficient in coupled mode

F force

L defined by LI: -1

K damping constant of damper

L denotes "Laplace transform of"

L denotes "Inverse Laplace transform of"

I length of the spring

M mass

p independent Laplace variable

R amplification factor

t time

A t duration of a rectangular input

v velocity due to an impulsive input acceleration

X dependent Laplace variable

y, iy displacement coordinate, velocity, acceleration
relative to a fixed datum

0(43 constants used in Equation K.28

deflection, velocity (rate of change of
deflection), acceleration (rate of change of
velocity) of spring

constants defined by L-0 L= A

K.1



9 phase angle = tan

phase angle = tan v

coupled frequency of undamped system

coupled frequency of damped system

4 uncoupled frequency

A(O) Dirac impulse function

SUFFICES

0 relates symbol to conditions at time t 0

or independent of time

1,2,3 relates symbol to appropriate sub-system

of Figure K.l(a)

C relates symbol to point C of Figure K.l(a)

and (b)
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As explained in the main text, the three degree of freedom model

was introduced in an attempt to establish a model that would include

the main structural (as opposed to hydraulic) effects of accelerations

on the human body. The three degree of freedom model allows the

dynamic response of at least three parts of the body to be determined

simultaneously, and modes of widely different frequency responses may

be studies, e.g. low frequency body effects together with the high

frequency spinal mode. The model consists of three sets of spring-

mass systems with damping, as illustrated in Figure K.l(a) and (b).

(a) ~ Figure K.1(b

Evaluation of the Forces Acting on Each Mass

The analysis of the forces acting on the three masses of the

system is similar to that described in Appendix J for the two degree

of freedom model, and will not be discussed in detail here.

The forces F2 and F. , due to the associated springs and dampers,

acting on the masses r-ij and rn are

F2 + ;L ÷ • K.1

andF3 
k S -Z 3iK.
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for given spring deflections G and 63 . Forces F2 and F3 act on

mass rY, in addition to the force developed in its own spring-damper

combination, but in the opposite direction. So

F, = ks, +2KIA I- •-w- k38a -2k~ag

Newton's second law of motion is used to give the equations of motion

for the three masses r, A " 3 These are

k (. K.3

M3 ý3 S+ VC,6

The output accelerations e, , , must be expressed in terms of

8,~ , and the input acceleration in order to solve the

equations of motion. Now, from Figure K.l(a), the undeflected

length txa of the spring k, is

112. = &o•- Yo, K.4

and the deflected length -tz is

t I =V.- %K.5

The deflection, 82 , in the spring h is, by definition

K.6

Equation K.6 is differentiated twice with respect to time to give

since and !o. are constants and hence

0•:2 •o =0

Similarly, (since the masses rnx and h)3 and their spring-damper

systems may be interchanged without loss of generality)

R K.8

The undeflected length of spring k, is (see Fig. K.l(a)) V.,

and the deflected length -

K. 4



So, by definition

+- K.9

which, after differentiating twice with respect to time, yields

K.10

since V., is a constant and so = 0.

The three equations K.7, K.8 and K.l0 may now be solved to give

and 9.3 in terms of Si • , 8 and

Equation K.l0 is rearranged and so giving

I = C_ -ý IK.11

Equations K.7 and K.11 are now used to give an expression for

I- z (from Equation K.7)

But, = - so that on substituting for ý, above, the

required form for is obtained.

Similarly, the expression for is obtained by using Equations K.8

and K.11 to give

-3 
K.13

The expressions for • and are now used in the set of

Equations K.3 to give the equations of motion in a form consistent

with that used throughout the appendices. The equations of motion

become

SK.14

These equations are now rearranged and divided through by the

appropriate mass to give

M MI 
K.15

+ +3

. 3 M3
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Certain parameters of the system can now be defined as follows

-- - (q "- = K.16

where WL is the uncoupled frequency of the appropriate spring-mass

system and C is the damping coefficient.

Note that

and
•L _ L i •_ _ -- = _ CL

so that using these parameters (K.16) in the equations of motion

gives .. 4-÷ Zc,_, +WO_$,- T'24 T-,S -',C M'3 to - 'S3

S+ W' .÷S K.17

.S k +3 *+ C28+ S h2

These are the equations of motion of the system for which a solution

is required using the Laplace transform method.

Solution of the Equations of Motion

There are two distinct input accelerations of interest and for

which experimental results exist. These are:

(a) short duration input with duration times, less than
one second (Ref. K.2)

(b) long (seconds or minutes) duration sinusoidal inputs as
reported in Ref. K.1

The solution for case (a) will be obtained by the use of the Laplace

transformation, as in previous appendices. The method used for

case (b) will be explained during the solution.
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(a) The General Case of the Rectangular Input

In this case the solution follows along lines similar to that of

previous appendices. It will be remembered that the Laplace transform

for a rectangular input acceleration, of the form ° = constant

from t = 0 to t =A t is (see Appendix J or Transform 78, page 136,

Ref. K.3).

Then, for 6 = ! 0 at t = 0, Equations K.17 transform readily

into

,n,- K.18(a)

) K.18(b)

The second and third Equations K.18 may be rewritten to give

X- and XS in terms of Oct and p as follows

• 2+•¢ p ÷ •K.19(a)

K.19(b)
4+

The expressions for X-1 and X3 from Equation K.19 are now substituted

in Equation K.18(a) to give the following equation for x,

(~ -K.20

This expression is now multiplied throughout by

to clear the denominators, and the terms inside the brackets are

expanded and regrouped.

In the first instance, only the terms independent of Ys will be

collected and transferred to the right side of K.20, so

Right side = •(I- c ) {( •'2L 1 4 •)L 3j•+')
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= + + T3

-+ -2 0. 4LA
3 +C 3 .3 *MZC3 2 W'r12c+-3 +CC 2t

+-I I, hr,

1 2K.21

+[.?÷,.e+w +(• 0+ ,.'..

4 W11.) + ~ ;;

MI M• I.2I

The terms containing Xi are now collected on the left side

+ Pl"C( 3 +. 3 )(&2C!+023)j

=X, hi (1 + t 4 k.C4. 4 4 
2

C 3 4- a4 C3 C o) ,.

+ t s 3Che ( " 4- anC dP4 ' by 2 1'24 s C prac2t'Ji e Wt fac to 3o

thre deree (of freedom~- and Cthere are threeO, 4ay lmoes4 ) inwhc

K a .8 K.22

-14+ 4CC) p4J 4 Z .Cji3C +c~ý) .(.+'?1 6

4ZC,kh 2v CA +C(I.L~L4C

+ [W such an n exrsso must contai CA+Iinfomto on thehre

4 4W32A+Ijn.+n3 WAA+..2



it can vibrate when considered as a combined system. Let f£ L be the

undamped frequency and C the associated damping of each mode. The

damped frequency of vibration is therefore given by

- 2 2. aý
IL = --DL -CL

which represents the sub-critically damped case of CL < 1AL (compare

Appendix E). K.23 may now be expressed as

X, p4 ZZZXý 4A'l;t 3 ý+ _2

which follows from similar reasoning to that used in Appendix J in

obtaining Equation J.31(b) from J.26. This expression may be

expanded and written in descending powers of p as follows

x, [ •%C',+. . ?•)~ + 4.a-• • L4cC,c. 4 I-C• -

.4 L4CICLC 3 )

+ (f~.n +fl fl'~i~4L4CC~I~+ 44?ic).) ~K.25
4 ~~ 4~'f. +n.~~4 J~l

Now, if K.24 is expression K.23 factored, then K.23 and K.25 must

be identical and so the coefficients of powers of p may be equated

to give the following equations for C(L and CL in terms of .JA and CL.

c, +a C•C1 + C X +C4 K.26(a)

+nt c)+C1LO ` C,0'4C C1 I+4cC31 CjC= 4- fat' 2,C £4- -6 C -+ Efl.2 E.Z S (c)I - ,6l •. )-4I' &~. - io,- .. L4 1  .. c• .'4m ig.c÷c, .w •d = 4 . +... ' " ..÷...0.+ •,(d)

Ina~L 4C + L rn e

C, Li .W 4- CýW), +0,t•,Q. C,A..Ofl•) + Cf ).1... (e)

-nL and CE may be obtained from test data e.g. from Ref. 1 and

Ref. 2, and an iterative solution of Equations K.26 can be obtained.

To avoid tedious calculations, an IBM 1620 digital computer has been

programed to obtain a solution to Equation K.26 for assumed mass

ratios. The solution gives values of WL' and C; which refer to

the individual characteristics of the component mass-spring systems.
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YL, may now be expressed J-n terms of known quantities and p from

Expression K.21 and K.24 as follows, since the right and

left hand sides of Equation K.20 regrouped

S= K.27

where B 3  = 2 2 :

B, M=

B. +i_

from K.21 and the C1 and L43L are known from K.26. In order to

proceed with the solution, the right side of Equation K.27 must be

expressed in the form of partial fractions, so let

The C4' and /3. are evaluated by combining the terms inside the

curly bracket of Equation K.28 and equating the coefficients of the

powers of p so obtained, to those of Equation K.27, since this is

the condition for the two expressions to be identical. Thus, K.28

becomes

SK.29

b

S4 ,(i&a- + • nJ .- i)-+ • C -a, 2,ni) .+ o(.• (-•,n• +.,-Ž32n J])

K.30
++ X I Q+, ~ 3 a 4 2fln(E1 2I+ a'j + 2 a. -f' + E. A Jj

where +nil) C 2Z3 1, *-a'
Equating coefficients of powers of p in Equation K.27 and K.30

gives the following equations

SI, + q + .0 =K.31(a)
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.1~~~ 32.K31

+ ( 1  ? cxflt) B1  (e)

.(f)

These equations can also be solved with the aid of a digital computer

to yield values for the c 's and /'s.

Returning to Equation K.28 and applying transforms 50 and 51,

pages 133 and 134 of Ref. 3, the solution of the problem may be

written in terms of o(, , 1-i ,-CIL and CL • For convenience, the

transforms are written here and combined, the case of XIL2 > CL

is considered.

L: L:

A' +

tO 4-

where I-

Combining this result with Theorem VII gives for t > A t

'0 -'•E '_(A iý -

LX

and for t t L t
4-- f3 -- e_0
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The 7 notation is now introduced in order to abreviate the equations.

On inspection of Equation K.28 it is seen that the right side of the

equation consists of three terms of the form

for which the inverse Laplace transform has been obtained above.

The solution now follows

t >• A t

and for t 4 A t

44V.Sj AIýLk4CL (b)
'2i"

where

and

-KIL

Since the terms involving damping have been retained, the spring

is no longer the sole means of transmitting force and the limitation

on S cannot necessarily be used to determine limiting g's.

Total force exerted on the mass by its associated spring-damper

system, will be used as a tolerance criterion in the spinal mode,

considered here. This force is given by

F --- k )C

or written as an acceleration

+ K.33

the acceleration that the mass M, would experience if masses *q.x and

n3 were detached. An expression for S, must be obtained from

Equation K.32 in order that • may be evaluated.

Differentiating Equation K.32 involves differentiating expressions
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such as

K.34

where , l , At and are independent of time.

The well known formula

ý (L( L") =u tU+ U _L

cLi'L at K. 35

is used to differentiate Expression K.34. Replacing LA by - -7

and tr by sin {iO (t - A t) + 0 in K.35 yields

[-ce- L--

But • = tan-I- , therefore

since - •

therefore

cc' (,e c4-4 0.

-ELe jj0 K.36

on application of the identity

Using this result in differentiating K.32 gives

for t > A t.

n, qt: __.,_ -

K. 1
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and for t < 4 t

•CL Al e -&~L K.37

A program for the IBM 1620 digital computer has been written for the

evaluation of the quantity ' so that its maximum value may be

obtained by inspection of a plot of 4 against time.

Since the step input acceleration (continuous) case is the

limit of the rectangular input case as At-000 the above solution

of 8, for t < A t is also the solution for the step input.

Impuslive Input Acceleration

The Dirac impulse function (see Appendix E) is used again to

obtain a solution for the impulsive input case. If V is the

velocity change within the system due to the applied acceleration,

then the Laplace transform of the input acceleration is

The transformed equations of motion (Equation K.17) for v A (t)

(4(t) is the Dirac impulse function) is then

= x (+ c,'&l~ + T3(- C x4CO>IL)n 2.~ ~ ±~~ 3 +3 K.38(a)

+ ~ +C ~ ) )LO (c)

The set of Equations K.38 is the same as the set K.18 with V•

replacing ý,(1 - - and the solution of x-, from the

set of Equations K.38 may be obtained from K.27 'by replacing

, ,,(1- - ) by Vý . Hence

Y~ V K.39

K.39 is expressed in partial fractions (c.f. Equation K.28)

x, ~--2,_.+a, . + ~K.4O
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The results of Equation K.30 are used, with c (1 - e ) replaced

by V since only V is taken outside the brackets, so that the

coefficients of powers of p may be equated. The following set of

equations is obtained (c.f. Equation K.31)

0(, + n.K- x .-- c< s -= I-••• K.41+ ,(a) ••z
A +/1 .'A3 +a-36, 93(b)

a(, -v 4 jZ-3) (x) ~-Xi> L+~ + &.-.fl4 4Cj'2 7 )

4 •/2 ~ ,' ,•.z + f9/•s )Jn 4 •.--E') -- • (C)13"~ (d)

0(1 -a, -Q3 +h2 3 .. +,34 + = o

where Bo through B- are obtained from Equation K.27.

The inverse Laplace transforms used for the previous case are applicable,

so the solution may be obtained from K.32(b) by replacing ýC by V

Thence

~p~J- .flLK.42

where

CL

and

-C L

Differentiating K.42 once with respect to time gives

L -!
SL~(S -- t'~ - L-V~

The technique and computer programs developed for the general

rectangular input are used to maximize j ,the acceleration that the

mass mi would experience if uncoupled from the system.
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(b) Sinusoidal Input Acceleration

The equations of motion for this case are obtained from

Equation K.17 on putting

where I4 is the amplitude and W. the frequency of the input

acceleration. The following equations are then obtained
•,+., "° ~3~- -~ 3 J ' L~.

'n' "ý 8, _'- , •, "

R~ C3 13 ~-+ L03 S;

The input acceleration is now written as the "Imaginary Part of"

where LL = -1, since e- ot + L sin w .

The damping in the system will, after a sufficiently long time,

attenuate all motion except that with a frequency WO (see Appendix E).

This part of the solution is known as the "steady statelsolution.

If the solution represents an oscillation of frequencybi then

it can be represented by Aj e where Aj is some complex constant

to be determined and -= 1, 2, 3.

SLL " Ln W 1ce'v •.A andt., an are substituted for and sin t

respectively. •4 and <' can be obtained by differentiation and
ce= tt , C will be a factor of each term

of each equation. Making these substitutions in K.43 and dividing

throughout by e .Ot gives

- .,A , K. ,,1

&0-2- A, ~ c .. t4)A

Since complex numbers have been introduced, the constant A• is

complex and, in order to continue with the solution, the real
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constants/,. and V are defined as follows

The above substitution for A1 is made and real and imaginary parts

separated and equated on each side of each equation of the set K.44

~ 1 .~Lv,) •L + t- W'L-4- L + =j )o

On equating real and imaginary parts of each equation, the following

set is obtained.

( 2- -- 3• C ,, -3

LnO2M 10L _A3w)i "dL.)2 3-Z, K.45caW2!2?c~4

C2. /2

The solution of these equations can be obtained numerically

using a digital computer to give/4j and V , since 4j,

are known from K.26.

The ratio R of the output or response amplitude to the

input amplitude is now obtained

_____K.46

and the phase angle
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APPENDIX L

SUMMARY OF RELEVANT HOLLOMAN A.F.B. AND
STANLEY AVIATION TEST RESULTS

This appendix summarizes the experimental data, used in

connection with the dynamic model analysis, that have not previously

received wide publication. Most of this data concerns experiments

performed on the Daisy Track sled at Holloman A.F.B. during a program

to investigate the effect of short duration accelerations of up to

80 G on human and animal subjects (Task 78503). This test program is

still being carried on. Four experiments are also reported that

were carried out at Stanley Aviation using a monorail facility, as part

of a comprehensive series of tests to evaluate the landing characteristics

of the Stanley B-58 escape capsule.

The Holloman data are given in the following table (see also

Refs. L.1, L.2 and L.3). The angle quoted indicates the position of

the body relative to the direction of the accelerating force, which is

assumed acting from 00.

TABLE L.1

Rate Total

Run Subject Peak of Dura- Velocity Dim.

No. G Onset tion Change of Medical Report

G/sec (sec) (ft/sec) Accel

335 Human 41.8 2140 .05 48.1 80 Shock, lost conscious-
fwd. ness. Severe paid

L.2 to coccyx.

344 Bear 43.2 1660 .09 47.3 100 Check out, no autopsy.
back- No injuries(?)
ward

389 Bear 55 3980 .03 47.2 0 Compression fractures
head- of thoracic vertebrae.
ward Fracture of rib and

pelvis. Internal and
external hemorrhage.

390 Bear 55.3 42 0 0  .05 46.1 0 Fracture of vertebrae
head- T.5 & T.6,4th rib and
ward pelvisMultiple
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Rate Total

Run Subject Peak of Dura- Velocity Dim.

No. G Onset tion Change of Medical Report
G/sec (sec) (ft/sec) Accel

661 Human 34.0 942 .08 46.4 100 Cervical spine pain.
back- Partial loss of vision.

ward Beginning syncope.

665 Human 27.0 775 .08 41.9 100 No injury
back-
ward

667 Human 30.5 942 .08 45.9 100 No injury
back-
ward

674 Human 33.5 1036 .08 45.3 100 Cervical spine pain
back-
ward

675 Human 34.0 1080 .08 46.0 100 Slight shock. Compression
back- fracture T.5. Fracture of
ward L.5

677 Human 29.0 1100 .09 43.5 100 No injury
back-
ward

In the experiments carried out at Stanley Aviation, the subjects

were seated in an escape capsule with full restraint, and dropped

from a monorail with forward and vertical velocity. Impact forces

were alleviated by a yielding metal attenuator and accelerations in

the three major directions were measured by accelerometers mounted on

the rigid seat back. The seat cushion of General Tire 1205

polyurethane was about 90% bottomed by the occupant's normal weight.

In all, 34 tests with bears and humans were performed and the results

reported in Table L.2 are of particular interest in that some form of

injury occurred.
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TABLE L.2

Peak G Transverse

Run Subject Spinal Forward Lateral Velocity Medical Report
No. Transverse Change

49 Human 19.5 45.3 7.8 35 ft/sec. Slight discomfort,
foot- T.3 and T.4, gone
ward in 24 hours.

50 Human 37.4 37.4 11.7 36 ft/sec. Compression fracture
head- T.3
ward

51 Human 28.8 86.6 17.7 33.5 ft/sec Severe shock (pallor
foot- and trembling).
ward

58 Human 20 63.3 27.5 37.6 ft/sec Occipital headache,
head- pain in T.4.
ward

Other drop tests carried out at Stanley Aviation have included

62 static tests (i.e. no forward velocity) and 49 drops from a

moving truck. These experiments covered a range of heights up to

12 ft. (transverse position) and no injuries were reported.
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